Characterization of Photoelectric Properties of ZnO by I-V Measurement

2012 ◽  
Vol 428 ◽  
pp. 153-158
Author(s):  
Meng Meng Miao

Experiments with ZnO Metal-Oxide-Semiconductor (MOS) under different circumstances were made to get four different I-V curves. There were four conditions: dark, and tests with the green, blue, ultraviolet LED light. According to references, three parameters B,VB0and Nbarrcould be acquired by fitting lines of the I-V curves using MATLAB and LabVIEW. From their definitions, B, VB0and Nbarrindicate photoelectric properties of ZnO cooperatively under concrete conditions. VB0,grain boundary potential, is parameter of extrinsic properties of ZnO determined by both ZnO and testing conditions. So VB0is critical to control the photoelectric properties of ZnO. A smaller VB0, the stronger the photoelectric response of ZnO and the lager the efficiency of photoelectric conversion. Besides, this theory can be expanded to test the photoelectric properties of the other semiconductor materials. And I-V curves can direct the application of these materials efficiently.

2015 ◽  
Vol 106 (5) ◽  
pp. 051605 ◽  
Author(s):  
Shenghou Liu ◽  
Shu Yang ◽  
Zhikai Tang ◽  
Qimeng Jiang ◽  
Cheng Liu ◽  
...  

2007 ◽  
Vol 46 (1) ◽  
pp. 51-55 ◽  
Author(s):  
Genshiro Kawachi ◽  
Yoshiaki Nakazaki ◽  
Hiroyuki Ogawa ◽  
Masayuki Jyumonji ◽  
Noritaka Akita ◽  
...  

2006 ◽  
Vol 917 ◽  
Author(s):  
Carlos Driemeier ◽  
Elizandra Martinazzi ◽  
Israel J. R. Baumvol ◽  
Evgeni Gusev

AbstractHfO2-based materials are the leading candidates to replace SiO2 as the gate dielectric in Si-based metal-oxide-semiconductor filed-effect transistors. The ubiquitous presence of water vapor in the environments to which the dielectric films are exposed (e.g. in environmental air) leads to questions about how water could affect the properties of the dielectric/Si structures. In order to investigate this topic, HfO2/SiO2/Si(001) thin film structures were exposed at room temperature to water vapor isotopically enriched in 2H and 18O followed by quantification and profiling of these nuclides by nuclear reaction analysis. We showed i) the formation of strongly bonded hydroxyls at the HfO2 surface; ii) room temperature migration of oxygen and water-derived oxygenous species through the HfO2 films, indicating that HfO2 is a weak diffusion barrier for these oxidizing species; iii) hydrogenous, water-derived species attachment to the SiO2 interlayer, resulting in detrimental hydrogenous defects therein. Consequences of these results to HfO2-based metal-oxide-semiconductor devices are discussed.


Sign in / Sign up

Export Citation Format

Share Document