Numerical Study on the Impact of the Sewage Drainage on Water Quality of Shanghai Water Sources

2012 ◽  
Vol 433-440 ◽  
pp. 1020-1026 ◽  
Author(s):  
Jie Gu ◽  
Wen Ting Li ◽  
Jing Huang ◽  
Bing Han

A 2D current and water quality model was set up with Delft3D-FLOW in this research, which was well calibrated and verified with the observed tidal levels and velocities. Considered with the project of the Qingcaosha Water Source, Pollution concentration distribution caused by sewage outfalls in the south bank of the Yangtze River during a neap tide of dry season is simulated and the computed results show: a high pollution zone appears near the south shore, and moves upward with flood flow and downward with ebb flow, however, it is bounded a limit region around the outfalls. During the tidal period, the water quality of the Qingcaosha water source can be classified as the second class water, which can ensure the normal water supply as the Shanghai water source. It is suggested that the regular monitoring water quality in this high pollution zone should be put into practice to ensure the water quality of water sourecs. The Yangtze River is adjacent to the East Sea and it’s the largest river in China, with obvious seasonal variant runoff and tidal flow. The Yangtze River was bifurcated by Chongming Island to south and north branch from Xuliujing, most of the flow go down through the south branch. The south branch was divided into south and north channel by Changxing Island and Hengsha Island. The south channel was bifurcated by Jiuduansha Shoal to south and north passage, three bifurcation areas and four estuarine outlets were formed (see Fig 1.)

2012 ◽  
Vol 66 (5) ◽  
pp. 1103-1109 ◽  
Author(s):  
Zenghu Qin ◽  
Mingwei Tong ◽  
Lin Kun

Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source–sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.


2021 ◽  
Vol 61 (7) ◽  
pp. 637
Author(s):  
Louise Edwards ◽  
Helen Crabb

Context Water is the first nutrient and an essential component of all agricultural production systems. Despite its importance there has been limited research on water, and in particular, the impact of its availability, management and quality on production systems. Aims This research sought to describe the management and quality of water used within the Australian pig industry. Specifically, the water sources utilised, how water was managed and to evaluate water quality at both the source and the point of delivery to the pig. Methods Fifty-seven commercial piggeries across Australia participated in this study by completing a written survey on water management. In addition, survey participants undertook physical farm parameter measurements including collecting water samples. Each water sample was tested for standard quality parameters including pH, hardness, heavy metals and microbiological status. Key results Responses were received from 57 farms, estimated to represent at least 22% of ‘large’ pig herds. Bore water was the most common water source being utilised within the farms surveyed. Management practices and infrastructure delivering water from the source to the point of consumption were found to differ across the farms surveyed. Furthermore, water was regularly used as a delivery mechanism for soluble additives such as antibiotics. The quality of water at the source and point of consumption was found to be highly variable with many parameters, particularly pH, hardness, salinity, iron, manganese and microbiological levels, exceeding the acceptable standard. Conclusions In general, water quality did not appear to be routinely monitored or managed. As a result, farm managers had poor visibility of the potential negative impacts that inferior water quality or management may be having on pig production and in turn the economics of their business. Indeed, inferior water quality may impact the delivery of antibiotics and in turn undermine the industry’s antimicrobial stewardship efforts. Implications The study findings suggest that water quality represents a significant challenge to the Australian pig industry. Access to drinking water of an acceptable quality is essential for optimal pig performance, health and welfare but also to ensure farm to fork supply chain integrity, traceability and food safety.


2020 ◽  
Vol 20 (6) ◽  
pp. 2145-2155
Author(s):  
Libin Chen ◽  
Zhuo Tian ◽  
Kaipeng Zou

Abstract Honghu Lake is the largest lake-type wetland in Hubei Province, China. It is also one of the largest shallow lakes in the Yangtze River Economic Zone, a key area in the relatively more developed southeast of China. However, the water quality has seen a deterioration tendency in recent decades, mostly owing to unreasonable human activities such as lake enclosure aquaculture following rapid social and economic development. Based on the water quality index (WQI) method, the water quality of Honghu Lake, by the vast amount of data collected from five observation sites monitored over ten years, was analyzed and evaluated. The results show that: (i) the water quality of Honghu Lake is in the ‘General’ grade as a whole with a WQI value of 43.41 ± 6.66; (ii) the water quality has been improving in the recent two years, reversing its decade-long deterioration; (iii) the water quality sampled at the Lantian site is the worst while that of the Guandun site is the best; (iv) the concentration of Pb and Cd are the key parameters to determine the water quality of Honghu Lake. Therefore, it can be concluded that more attention should be paid to investigate heavy metals in Honghu Lake in the future.


2021 ◽  
Vol 13 (16) ◽  
pp. 3309
Author(s):  
Jian Wu ◽  
Sidong Zeng ◽  
Linhan Yang ◽  
Yuanxin Ren ◽  
Jun Xia

The spatiotemporal characteristics of river water quality are the key indicators for ecosystem health evaluation in basins. Land use patterns, as one of the main driving forces of water quality change, affect stream water quality differently with the variations in the spatiotemporal scales. Thus, quantitative analysis of the relationship between different land cover types and river water quality contributes to a better understanding of the effects of land cover on water quality, the landscape planning of water quality protection, and integrated water resources management. Based on water quality data of 2006–2018 at 18 typical water quality stations in the Yangtze River basin, this study analyzed the spatial and temporal variation characteristics of water quality by using the single-factor water quality identification index through statistical analysis. Furthermore, the Spearman correlation analysis method was adopted to quantify the spatial-scale and temporal-scale effects of various land uses, including agricultural land (AL), forest land (FL), grassland (GL), water area (WA), and construction land (CL), on the stream water quality of dissolved oxygen (DO), chemical oxygen demand (CODMn), and ammonia (NH3-N). The results showed that (1) in terms of temporal variation, the water quality of the river has improved significantly and the tributaries have improved more than the main rivers; (2) in the spatial variation respect, the water quality pollutants in the tributaries are significantly higher than those in the main stream, and the concentration of pollutants increases with the decrease of the distance from the estuary; and (3) the correlation between DO and land use is low, while that between NH3-N, CODMn, and land use is high. CL and AL have a negative effect on water quality, while FL and GL have a purifying effect on water quality. In particular, AL and CL have a significant positive correlation with pollutants in water. Compared with NH3-N, CODMn has a higher correlation with land use at a larger scale. The results highlight the spatial scale and seasonal dependence of land use on water quality, which can provide a scientific basis for land management and seasonal pollution control.


2020 ◽  
Vol 5 (19) ◽  
pp. 118-133
Author(s):  
Mohmadisa Hashim ◽  
Erna Zuryena Ramli ◽  
Dewi Liesnoor Setyowati ◽  
Nasir Nayan ◽  
Zahid Mat Said ◽  
...  

This article aimed to identify the water quality of the Liwagu River, Sabah, due to the impact of land use activities in the sub-basin area. The Liwagu river provides the main water source for the local population for domestic purposes. Observations on the water quality of the Liwagu river and identification of the types of land use activities along the river were investigated. Assessment of the Liwagu river water quality engaging six parameters, namely biochemical oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO), alkaline index (pH), ammonia nitrogen (NH3N) and suspended solids (SS) in five stations that were selected. All of the parameters were analyzed against the Water Quality Index (WQI) standards by the Department of Environment (DOE) Malaysia. Water quality sampling was carried out three times, which were in February, March, and April 2019. The results showed that the average value of WQI in February 2019 was at a good level (Class I), and in March and April, 2019 was at a clean level (Class II). The COD parameter showed values that exceeded the standards set by DOE Malaysia. The decline in water quality parameters was also contributed by tourism, agriculture, settlements, and loging upstream and along the river. In conclusion, the impact of land use activities on the quality of the Liwagu river was still under control and planned in terms of its development. However, monitoring for river pollution should be conducted regularly by various parties as an early step in preventing the degradation of the Liwagu river's water quality since the water source is also used by the nearby villagers as a source for water supply.


2016 ◽  
Vol 3 (1) ◽  
pp. 55-60
Author(s):  
Yu. Lavrynenko ◽  
R. Vozhegova ◽  
O. Hozh

The purpose of the research is to identify effi cient microfertilizers and growth stimulants considering biologi- cal features of new corn hybrids of different FAO groups under irrigation conditions in the South of Ukraine and trace their impact on grain productivity of the plants. The methods of the research are the fi eld method – to study the interaction of the research object with experimental factors of the natural environment, to register the yield and evaluate the biometrical indices; the laboratory method – to measure soil moisture, grain moisture content and grain quality indices; the statistical method – to evaluate the reliability of the obtained results; the calculation methods – for economic and energetic assessment of the growing techniques used. The results of the research. The paper defi nes the impact of microfertilizers and growth stimulants on the yield and grain quality of the corn hybrids of different maturity groups and on the economic effi ciency of growing them. The conclusions of the research. Under irrigation conditions of the Southern Steppe of Ukraine it is recommended that the following hybrids should be grown in dark-chestnut soils: early maturity DN Pyvykha, medium-early Skadovskyi, medium maturity Kakhovskyi and medium-late Arabat, using the growth stimulants – treating the seeds with Sezam-Nano and fertilizing with Grainactive at the stage of 7–8 leaves.


Sign in / Sign up

Export Citation Format

Share Document