scholarly journals Optimal Placement of Social Digital Twins in Edge IoT Networks

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6181
Author(s):  
Olga Chukhno ◽  
Nadezhda Chukhno ◽  
Giuseppe Araniti ◽  
Claudia Campolo ◽  
Antonio Iera ◽  
...  

In next-generation Internet of Things (IoT) deployments, every object such as a wearable device, a smartphone, a vehicle, and even a sensor or an actuator will be provided with a digital counterpart (twin) with the aim of augmenting the physical object’s capabilities and acting on its behalf when interacting with third parties. Moreover, such objects can be able to interact and autonomously establish social relationships according to the Social Internet of Things (SIoT) paradigm. In such a context, the goal of this work is to provide an optimal solution for the social-aware placement of IoT digital twins (DTs) at the network edge, with the twofold aim of reducing the latency (i) between physical devices and corresponding DTs for efficient data exchange, and (ii) among DTs of friend devices to speed-up the service discovery and chaining procedures across the SIoT network. To this aim, we formulate the problem as a mixed-integer linear programming model taking into account limited computing resources in the edge cloud and social relationships among IoT devices.

2018 ◽  
Vol 15 (4) ◽  
pp. 484-491 ◽  
Author(s):  
Baghdad Science Journal

The deployment of UAVs is one of the key challenges in UAV-based communications while using UAVs for IoT applications. In this article, a new scheme for energy efficient data collection with a deadline time for the Internet of things (IoT) using the Unmanned Aerial Vehicles (UAV) is presented. We provided a new data collection method, which was set to collect IoT node data by providing an efficient deployment and mobility of multiple UAV, used to collect data from ground internet of things devices in a given deadline time. In the proposed method, data collection was done with minimum energy consumption of IoTs as well as UAVs. In order to find an optimal solution to this problem, we will first provide a mixed integer linear programming model (MILP) and then we used a heuristic to solve the time complexity problem. The results obtained in the simulation results indicate the optimal performance of the proposed scheme in terms of energy consumption and the number of used UAVs.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1452
Author(s):  
Cristian Mateo Castiblanco-Pérez ◽  
David Esteban Toro-Rodríguez ◽  
Oscar Danilo Montoya ◽  
Diego Armando Giral-Ramírez

In this paper, we propose a new discrete-continuous codification of the Chu–Beasley genetic algorithm to address the optimal placement and sizing problem of the distribution static compensators (D-STATCOM) in electrical distribution grids. The discrete part of the codification determines the nodes where D-STATCOM will be installed. The continuous part of the codification regulates their sizes. The objective function considered in this study is the minimization of the annual operative costs regarding energy losses and installation investments in D-STATCOM. This objective function is subject to the classical power balance constraints and devices’ capabilities. The proposed discrete-continuous version of the genetic algorithm solves the mixed-integer non-linear programming model that the classical power balance generates. Numerical validations in the 33 test feeder with radial and meshed configurations show that the proposed approach effectively minimizes the annual operating costs of the grid. In addition, the GAMS software compares the results of the proposed optimization method, which allows demonstrating its efficiency and robustness.


2021 ◽  
Vol 11 (5) ◽  
pp. 2175
Author(s):  
Oscar Danilo Montoya ◽  
Walter Gil-González ◽  
Jesus C. Hernández

The problem of reactive power compensation in electric distribution networks is addressed in this research paper from the point of view of the combinatorial optimization using a new discrete-continuous version of the vortex search algorithm (DCVSA). To explore and exploit the solution space, a discrete-continuous codification of the solution vector is proposed, where the discrete part determines the nodes where the distribution static compensator (D-STATCOM) will be installed, and the continuous part of the codification determines the optimal sizes of the D-STATCOMs. The main advantage of such codification is that the mixed-integer nonlinear programming model (MINLP) that represents the problem of optimal placement and sizing of the D-STATCOMs in distribution networks only requires a classical power flow method to evaluate the objective function, which implies that it can be implemented in any programming language. The objective function is the total costs of the grid power losses and the annualized investment costs in D-STATCOMs. In addition, to include the impact of the daily load variations, the active and reactive power demand curves are included in the optimization model. Numerical results in two radial test feeders with 33 and 69 buses demonstrate that the proposed DCVSA can solve the MINLP model with best results when compared with the MINLP solvers available in the GAMS software. All the simulations are implemented in MATLAB software using its programming environment.


2017 ◽  
Vol 5 (3) ◽  
pp. 267-278 ◽  
Author(s):  
Peng Jia ◽  
Weilun Zhang ◽  
E Wenhao ◽  
Xueshan Sun

Abstract Due to the long operation cycle of maritime transportation and frequent fluctuations of the bunker fuel price, the refueling expenditure of a chartered ship at different time or ports of call make significant difference. From the perspective of shipping company, an optimal set of refueling schemes for a ship fleet operating on different voyage charter routes is an important decision. To address this issue, this paper presents an approach to optimize the refueling scheme and the ship deployment simultaneously with considering the trend of fuel price fluctuations. Firstly, an ARMA model is applied to forecast a time serials of the fuel prices. Then a mixed-integer nonlinear programming model is proposed to maximize total operating profit of the shipping company. Finally, a case study on a charter company with three bulk carriers and three voyage charter routes is conducted. The results show that the optimal solution saves the cost of 437,900 USD compared with the traditional refueling scheme, and verify the rationality and validity of the model.


1999 ◽  
Vol 121 (4) ◽  
pp. 701-708 ◽  
Author(s):  
Q. A. Sayeed ◽  
E. C. De Meter

Workpiece deformation during machining is a significant source of machined feature geometric error. This paper presents a linear, mixed integer programming model for determining the optimal locations of locator buttons, supports, and their opposing clamps for minimizing the affect of static workpiece deformation on machined feature geometric error. This model operates on discretized candidate regions as opposed to continuous candidate regions. In addition it utilizes a condensed FEA model of the workpiece in order to minimize model size and computation expense. This model has two advantages over existing nonlinear programming (NLP) formulations. The first is its ability to solve problems in which fixture elements can be placed over multiple regions. The second is that a global optimal solution to this model can be obtained using commercially available software.


TecnoLógicas ◽  
2019 ◽  
Vol 22 (44) ◽  
pp. 61-80 ◽  
Author(s):  
Juliana Jiménez ◽  
John E. Cardona ◽  
Sandra X. Carvajal

This article introduces a new mixed integer linear programming model that guarantees the optimal solution to the location and sizing problem of distributed photovoltaic generators in an isolated mini-grid. The solar radiation curves of each node in the mini-grids were considered, and the main objective was to minimize electric power losses in the operation of the system. The model is non-linear in nature because some restrictions are not linear. However, this article proposes the use of linearization techniques to obtain a linear model with a global optimal solution, which can be achieved through commercial solvers; CPLEX in this case. The proposed model was tested in an isolated 14-bus mini-grid, based on real data of topology, demand and generation adapted to a balanced operation. This model shows, as a result, the optimal location of photovoltaic generators and their optimal capacity produced by the maximum active power delivered at the maximum solar irradiation time of the region. It is also evident that the hybrid operation between small hydroelectric power plants and photovoltaic generation improves the network voltage profile and the electric power losses without the use power storage systems.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2098 ◽  
Author(s):  
Guang Xing Lye ◽  
Wai Khuen Cheng ◽  
Teik Boon Tan ◽  
Chen Wei Hung ◽  
Yen-Lin Chen

Despite advancements in the Internet of Things (IoT) and social networks, developing an intelligent service discovery and composition framework in the Social IoT (SIoT) domain remains a challenge. In the IoT, a large number of things are connected together according to the different objectives of their owners. Due to this extensive connection of heterogeneous objects, generating a suitable recommendation for users becomes very difficult. The complexity of this problem exponentially increases when additional issues, such as user preferences, autonomous settings, and a chaotic IoT environment, must be considered. For the aforementioned reasons, this paper presents an SIoT architecture with a personalized recommendation framework to enhance service discovery and composition. The novel contribution of this study is the development of a unique personalized recommender engine that is based on the knowledge–desire–intention model and is suitable for service discovery in a smart community. Our algorithm provides service recommendations with high satisfaction by analyzing data concerning users’ beliefs and surroundings. Moreover, the algorithm eliminates the prevalent cold start problem in the early stage of recommendation generation. Several experiments and benchmarking on different datasets are conducted to investigate the performance of the proposed personalized recommender engine. The experimental precision and recall results indicate that the proposed approach can achieve up to an approximately 28% higher F-score than conventional approaches. In general, the proposed hybrid approach outperforms other methods.


2012 ◽  
Vol 433-440 ◽  
pp. 1957-1961 ◽  
Author(s):  
Su Wang ◽  
Iko Kaku ◽  
Guo Yue Chen ◽  
Min Zhu

Tugboat is one kind of important equipment in container terminal to help ships for docking or leaving the berth. Tugboat assignment operation is one of the most important decision making problem because it has an important effect on the turnaround time of ships. In this paper, a mixed-integer programming model combined with scheduling rule is formulated for the Tugboat Assignment Problem (TAP). Then a solution method is provided to obtain the optimal solution of TAP problem. Finally, numerical experiments are executed to illustrate the utility of the model and to analyze the effects of the number and service capacity of tugboats on the turnaround time of ships.


Author(s):  
Nguyen Hoang Son ◽  
Nguyen Van Hop

In this work, a mixed-integer linear programming model is formulated to allocate the appropriate orders to the right suppliers for recyclable raw materials. We modify the previous model for the supplier selection and order allocation problem for stochastic demand to cope with the supply risks of recyclable raw materials such as insufficient supply quantity, defective rate, and late delivery. The optimal solution of the mathematical model is the benchmark for small-sized problems. Then, a hybrid meta-heuristic of Particles Swarm Optimization and Grey Wolf Optimization (PSO-GWO) is proposed to search for the best solution for large-sized problems. A real-life case study of a steel manufacturer with two factories in Vietnam is presented to validate the proposed approach. Some experiments have been tested to confirm the performance of the hybrid PSO-GWO approach.


2018 ◽  
Vol 28 (2) ◽  
pp. 249-264 ◽  
Author(s):  
Avik Pradhan ◽  
Biswal Prasad

In this paper, we consider some Multi-choice linear programming (MCLP) problems where the alternative values of the multi-choice parameters are fuzzy numbers. There are some real-life situations where we need to choose a value for a parameter from a set of different choices to optimize our objective, and those values of the parameters can be imprecise or fuzzy. We formulate these situations as a mathematical model by using some fuzzy numbers for the alternatives. A defuzzification method based on incentre point of a triangle has been used to find the defuzzified values of the fuzzy numbers. We determine an equivalent crisp multi-choice linear programming model. To tackle the multi-choice parameters, we use Lagranges interpolating polynomials. Then, we establish a transformed mixed integer nonlinear programming problem. By solving the transformed non-linear programming model, we obtain the optimal solution for the original problem. Finally, two numerical examples are presented to demonstrate the proposed model and methodology.


Sign in / Sign up

Export Citation Format

Share Document