Encapsulation of Pigment Using Natural Polysaccharides

2012 ◽  
Vol 441 ◽  
pp. 494-502
Author(s):  
Manal Moustafa Rekaby ◽  
Qin Guo Fan

With a view to developing UV curable systems from renewable biocompatible raw materials, the present work deals with the encapsulation of pigments with polysaccharide derivatives that can undergo crosslinking upon exposure to UV radiation. Maleate ester derivatives were prepared in anhydrous conditions using maleic anhydride in the presence of pyridine. Encapsulation of the pigment core in the prepared UV curable systems occurred by applying the prepared guar derivative as a shell material in a UV curable formulation that can be induced by a photoinitiator. Encapsulation is done by the o/w/o miniemulsion polymerization technique. In another approach, and for the sake of comparison, microencapsulation was performed via chemical crosslinking of the prepared guar maleate derivative in a W/O emulsion .The resultant nanocapsules were characterized using FTIR, DSC, and SEM. The nanocapsules were spherical with average particle size of 100 nm.

Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 320 ◽  
Author(s):  
Dries Devlaminck ◽  
Paul Van Steenberge ◽  
Marie-Françoise Reyniers ◽  
Dagmar D’hooge

A 5-dimensional Smith-Ewart based model is developed to understand differences for reversible addition-fragmentation chain transfer (RAFT) miniemulsion polymerization with theoretical agents mimicking cases of slow fragmentation, cross-termination, and ideal exchange while accounting for chain length and monomer conversion dependencies due to diffusional limitations. The focus is on styrene as a monomer, a water soluble initiator, and a macro-RAFT agent to avoid exit/entry of the RAFT leaving group radical. It is shown that with a too low RAFT fragmentation rate coefficient it is generally not afforded to consider zero-one kinetics (for the related intermediate radical type) and that with significant RAFT cross-termination the dead polymer product is dominantly originating from the RAFT intermediate radical. To allow the identification of the nature of the RAFT retardation it is recommended to experimentally investigate in the future the impact of the average particle size (dp) on both the monomer conversion profile and the average polymer properties for a sufficiently broad dp range, ideally including the bulk limit. With decreasing particle size both a slow RAFT fragmentation and a fast RAFT cross-termination result in a stronger segregation and thus rate acceleration. The particle size dependency is different, allowing further differentiation based on the variation of the dispersity and end-group functionality. Significant RAFT cross-termination is specifically associated with a strong dispersity increase at higher average particle sizes. Only with an ideal exchange it is afforded in the modeling to avoid the explicit calculation of the RAFT intermediate concentration evolution.


2014 ◽  
Vol 989-994 ◽  
pp. 611-614
Author(s):  
Ling Li ◽  
Wen Ming Zhang ◽  
Hua Yan Zhang ◽  
Zi Hao Xu ◽  
Sen Wang ◽  
...  

Vanadium/iron co-doped nanoTiO2 transparent hydrosol with an average particle size of 3.8 nm was synthesized by a novel complexation-controlled hydrolysis method at room temperature and atmospheric pressure by using TiCl4, ferric nitrate, ammonium metavanadate, etc. as raw materials. The composition, phase structure, particle size, absorbance spectrum, and photocatalytic performance of samples were characterized by XRD, EDS, nanolaser particle size analyzer, and UV-Vis spectrophotometer. The photocatalytic properties of V/Fe doped TiO2 were studied through degrading acid 3R dye, and the results show that when the content of V/Fe was 0.5%, the degradation rate reached more than 96% under irridation for 60 min.


2014 ◽  
Vol 793 ◽  
pp. 151-158 ◽  
Author(s):  
M. León-Carriedo ◽  
C.A. Gutiérrez Chavarría ◽  
J.L. Rodríguez Galicia ◽  
Jorge López-Cuevas ◽  
M.I. Pech Canul

In the present work, the characterization of monolithic materials formulated at different weight concentrations was conducted; employing two of the ceramic materials most used in the refractory industry, zircon and alumina. These monolithic materials were fabricated using colloidal techniques, specifically plaster casting mold, in order to obtain pieces with a higher particle consolidation and density, reducing porosity to lower values than the obtained using traditional shaping process of these materials. The monoliths were obtained employing two ceramic powders with different average particle size and morphology to achieve better packing in the green body. This characterization was carried out, firstly, determining the particle size of the raw materials by laser diffraction and the evaluation of particle morphology by scanning electron microscopy. Aqueous suspensions were formulated by containing both ceramic materials, which were dispersed with Tamol 963, and analyzed by rheometric techniques. Subsequently, bars were manufactured having the following dimensions; 4 mm wide, 3 mm thick and 45 mm in length, according to ASTM C1161-02cc, to be characterized microstructural and mechanically, also was observed the fracture habit after the mechanical test. As a final result, the materials formulated at higher alumina content showed higher density values, reaching 94.95% of the theoretical density, also showed a higher thermal expansion coefficient and high rupture modulus, reaching up to 600 MPa and Young modulus of 230 GPa. From the microstructure characterization it was observed that alumina matrix shows a transgranular fracture across the grains and zircon particles exhibited intergranular fracture among the grain boundaries.


2013 ◽  
Vol 544 ◽  
pp. 3-7 ◽  
Author(s):  
Jin Sheng Li ◽  
Xu Dong Sun ◽  
Shao Hong Liu ◽  
Di Huo ◽  
Xiao Dong Li ◽  
...  

Fine yttrium stearate powder was produced at a relatively low temperature using yttrium nitrate hexahydrate, ammonia and stearic acid as the raw materials. Dispersed Y2O3 nanopowder was synthesized by calcining the yttrium stearate. The formation mechanism of the precursor and the Y2O3 nanopowder was studied by means of XRD, TG-DTA, FT-IR, BET, FE-SEM and HR-TEM. Pure and dispersed Y2O3 nanopowder with an average particle size of 30 nm was produced by calcining the precursor at 600 °C. The particle size increases to about 60 nm with the increase of the calcination temperature to 1000 °C. In the preparation of Y2O3 from yttrium stearate, no water medium is involved, thus capillarity force and bridging of adjacent particles by hydrogen bonds can be avoided, resulting in good dispersion of the particles. The dispersed Y2O3 nanopowder prepared in this work has potential application in phosphors and transparent ceramic materials.


2018 ◽  
Vol 36 (5-6) ◽  
pp. 1260-1273 ◽  
Author(s):  
Cai-Li Yu ◽  
Feng Bian ◽  
Shu-Fen Zhang ◽  
Xu Xu ◽  
Peng Ren ◽  
...  

Carboxyl-functionalized polymer microspheres with a rosin moiety were prepared through dispersion polymerization using styrene, disproportionated rosin ester, and methylacrylic acid as raw materials. The effects of dispersion medium (ethanol/water) ratio, monomer mass proportion and initiator concentration on the polymer microspheres were studied. Scanning electron microscopy, laser particle size analysis, thermogravimetric analysis and Fourier transform infrared spectroscopy were used to characterize the microspheres, and their carboxyl contents were determined by the conductance titration method. The adsorption of methylene blue of the microspheres was also investigated. The results showed that rosin-based carboxyl-functionalized polymer microspheres were successfully synthesized. The microspheres exhibited smooth, spherical shapes with good monodispersity and high thermal stability. The carboxyl content of the microspheres prepared under optimum conditions was 0.089 mmol·g−1, with the average particle size approximately 950 nm. With increasing carboxyl contents of the polymer microspheres, their methylene blue adsorption capacities increased. The maximum methylene blue adsorption capacity of the microspheres was 59.55 mg·g−1 in the highest carboxyl content.


2014 ◽  
Vol 587-589 ◽  
pp. 788-791
Author(s):  
Ling Li ◽  
Hua Yan Zhang ◽  
Xiao Wei Li ◽  
Zi Hao Xu ◽  
Sen Wang ◽  
...  

Sulfur-doped nanoTiO2transparent hydrosol with an average particle size of 3.8 nm was synthesized by a novel complexation-controlled hydrolysis method at room temperature and atmospheric pressure by using TiCl4, thiourea, organic carboxylic acid, NH3H2O, D-sorbitol etc. as raw materials. The composition, phase structure, particle size, absorbance spectrum, and photocatalytic performance of samples were characterized by XRD, nanolaser particle size analyzer, ultraviolet-visible spectrophotometer. In addition, the influence of reaction conditions in the synthesis process was also studied. The results indicate that when nanoparticle doped with 0.5% S, and the reflux time was 15 min, the photocatalytic performance of sulfur-doped TiO2hydrosol was best.


2020 ◽  
Vol 6 (444) ◽  
pp. 111-118
Author(s):  
Т.S. Bazhirov ◽  
◽  
V.S. Protsenko ◽  
N.S. Bazhirov ◽  
M.S. Dauletiyarov ◽  
...  

The research results of physicochemical and physicotechnical properties of slag wastes from ferrochrome production as raw materials for heat-resistant materials are presented. Chemical and mineralogical composition of slag from high-carbon ferrochrome production and slag from low-carbon ferrochrome production, as well as their constituent main crystalline phases, represented by magnesium and calcium aluminosilicates of complex composition, have been determined by physicochemical research methods. According to X-ray phase analysis, the slag from the high-carbon ferrochrome production is represented mainly by forsterite Mg2SiO4, spinel MgAl2O4, partially amorphous glass phase and admixture of calcium orthosilicate Ca2SiO4. In the slag from the low-carbon ferrochrome production, the main crystalline phase is calcium orthosilicate γ-Ca2SiO4, as well as magnesium orthosilicate forsterite Mg2SiО4. The research results of specific surface area, average particle size determination and sieve analysis have shown that the slag from the low-carbon ferrochrome production is a finely dispersed gray powder with the following characteristics: the specific surface area – 295 m2 /kg, the average particle size – 6.8 μm, the true density – 3.01 g/cm3 , the bulk density – 739 kg/m3 . The research of the physicochemical and physicotechnical properties has established that in terms of chemical, mineralogical composition and refractoriness indices, the slags from the high-carbon ferrochrome and low-carbon ferrochrome productions can be valuable raw materials for heat-resistant materials.


e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Yanyan Wei ◽  
Haobo Xin

AbstractA series of anionic polyurethane prepolymers with different molecular structures were synthesized. Different amounts of hexamethylene diisocyanate (HDI) and toluence diisocyanate (TDI) were employed in the synthesis. When the carboxylic content was 0.3 mmol/g, the colloidal stability of the polyurethane dispersions was rather good and their particle size was nano-scale. Moreover, no acetone or other solvent were used during the process of emulsification. The structures of the polyurethane prepolymers were characterized by Fourier transform Infrared spectrometry with attenuated total reflectance (FTIR-ATR) and Gel permeation chromatography (GPC). It was found that the mass ratio of HDI to TDI was able to be quantitatively analyzed by means of FTIR-ATR. The molecular weight and distribution did not show a regular trend with the changing of HDI/TDI ratio. The influence of diisocyanate on the particle size and the coating properties was investigated. It seems that hexamethylene diisocyanate was helpful for obtaining nano-scale particles. These polyurethane dispersions could obtain an average particle size less than 100 nm when mass ratio of HDI/TDI was above 0.25. The polyurethane dispersions with nano-scale particle had a transparent appearance with a bluish cast. It is indicated that the hydrophilic efficiency would be improved and the coating hardness decreased if more HDI was employed.


2013 ◽  
Vol 423-426 ◽  
pp. 135-138
Author(s):  
Jun Fang Wei ◽  
Fang Zhu ◽  
Xiao Yan Zhang

A monodisperse nanocrystalline HZSM-5 zeolite was prepared by varying-temperature synthesis method with aluminum nitrate (Al (NO3)3), tetraethyl orthosilicate (TEOS), and tetrapropyl ammonium hydroxide (TPAOH) as raw materials. X-ray diffraction (XRD) characterization results showed that the crystallinity of HZSM-5 prepared by varying-temperature synthesis method was higher than constant-temperature synthesis . The influence of crystallization temperature and time on morphology and particle size of HZSM-5 is represented by scanning electronic microscopy (SEM) characterization: nanocrystalline HZSM-5 with more regular morphology and smaller particle size can be prepared by varying-temperature synthesis method. The minimum average particle size is 0.3μm. The particle size will grow up to 3.0μm with the crystallization time prolonged.


2012 ◽  
Vol 586 ◽  
pp. 161-165 ◽  
Author(s):  
Hao Ran Zhou ◽  
Jing Yu Zhang ◽  
Hao Jiang

CS-ACAP drug-loading microsperes are prepared with using CS and ACAP as the main raw materials by emulsification-crosslinking method. Orthogonal experiment was designed to optimize the preparation process of the CS-ACAP drug-loading microspheres. FT-IR and SEM were applied to characterize the structure and morphology of microspheres. The sustained release effect of CS-ACAP microsphere was measured by sustained release measurement. The results showed that the CS-ACAP drug-loading micropheres were successfully prepared by emulsification-crosslinking method. Obtained microspheres as a perforated sphere, the average particle size of the microspheres was 30μm and the microspheres had a uniformly particle size distribution; the drug-loaded microspheres had good sustained release effect.


Sign in / Sign up

Export Citation Format

Share Document