Synthesis and Characterization of Monodisperse Nanocrystalline HZSM-5 Zeolite

2013 ◽  
Vol 423-426 ◽  
pp. 135-138
Author(s):  
Jun Fang Wei ◽  
Fang Zhu ◽  
Xiao Yan Zhang

A monodisperse nanocrystalline HZSM-5 zeolite was prepared by varying-temperature synthesis method with aluminum nitrate (Al (NO3)3), tetraethyl orthosilicate (TEOS), and tetrapropyl ammonium hydroxide (TPAOH) as raw materials. X-ray diffraction (XRD) characterization results showed that the crystallinity of HZSM-5 prepared by varying-temperature synthesis method was higher than constant-temperature synthesis . The influence of crystallization temperature and time on morphology and particle size of HZSM-5 is represented by scanning electronic microscopy (SEM) characterization: nanocrystalline HZSM-5 with more regular morphology and smaller particle size can be prepared by varying-temperature synthesis method. The minimum average particle size is 0.3μm. The particle size will grow up to 3.0μm with the crystallization time prolonged.

2012 ◽  
Vol 468-471 ◽  
pp. 1247-1250 ◽  
Author(s):  
Fang Yang ◽  
Zhi Meng Guo ◽  
Jun Jie Hao ◽  
Yong Liang Shi

The ultra-fine TiB2-Ti(C, N) composite powders were prepared by self-propagating high-temperature synthesis (SHS) with Ti, BN and C powders as its starting materials. The morphology of the products was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results showed the composite powders were consisted of the mainly phases Ti(C, N), TiB2 and a small amount of TiN phase. With the Ni addition, the brittle phase Ni3B was appeared. SEM results revealed that the composite powders had a uniform particle size, a round grain-shaped structure and a narrow size distribution and the average particle size of which is less than 1μm.


2013 ◽  
Vol 423-426 ◽  
pp. 117-120
Author(s):  
Jun Fang Wei ◽  
Fang Zhu ◽  
Xiao Yan Zhang

With addition of surfactants, a nanocrystalline HZSM-5 zeolite was prepared by hydrothermal synthesis method. X-ray diffraction (XRD) characterization results showed that surfactants can constraint the crystallization of HZSM-5. Scanning electronic microscopy (SEM) characterization revealed that nanocrystalline HZSM-5 with more regular morphology and smaller particle size can be prepared with suitable surfactants as additives. The HZSM-5 particles were 200-800 nm in size and constructed by primary HZSM-5 nanocrystals of 3050 nm. The average particle size will grow up to 800 nm with a cationic surfactant, and decrease to 200 nm with a anionic surfactant.


2010 ◽  
Vol 93-94 ◽  
pp. 153-156 ◽  
Author(s):  
Pusit Pookmanee ◽  
Sumintra Paosorn ◽  
Sukon Phanichphant

Bismuth vanadate powder was synthesized by a chemical co-precipitation method. Bismuth nitrate and ammonium vanadate were used as the starting precursors. The yellow precipitated powder was formed after adding ammonium hydroxide until the pH of final solution was 7. The powder was filtered and dried at 60 °C for 24h and calcined at 200-400 °C for 2h. The phase of bismuth vanadate powder was studied by X-ray diffraction (XRD). A single phase of monoclinic structure was obtained after calcinations at 200-400 °C for 2h. The morphology and particle size of bismuth vanadate powder were investigated by scanning electron microscopy (SEM). The particle was irregular in shape and highly agglomerated with an average particle size of 0.5 µm in width and 1.5 µm in length.


2013 ◽  
Vol 821-822 ◽  
pp. 1317-1320
Author(s):  
Jun Fang Wei ◽  
Fang Zhu ◽  
Xiao Yan Zhang

Porous α-alumina supports were seeded with monodisperse nanocrystalline HZSM-5 zeolite and calcined. The supports were treated in a synthesis solution to grow the seeds into HZSM-5 membrane with aluminum nitrate (Al (NO3)3), tetraethyl orthosilicate (TEOS), and tetrapropyl ammonium hydroxide (TPAOH) as raw materials. X-ray diffraction (XRD) characterization results showed that the membranes consisted of well-crystallizedH ZSM-5. The influence of crystallization time on morphology of HZSM-5 membranes was represented by scanning electronic microscopy (SEM) characterization: the HZSM-5 zeolite membranes on the supports were defect free and the membrane thickness was increased with the crystallization time prolonged.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
K. A. Athmaselvi ◽  
C. Kumar ◽  
M. Balasubramanian ◽  
Ishita Roy

This study evaluates the physical properties of freeze dried tropical (guava, sapota, and papaya) fruit powders. Thermal stability and weight loss were evaluated using TGA-DSC and IR, which showed pectin as the main solid constituent. LCR meter measured electrical conductivity, dielectric constant, and dielectric loss factor. Functional groups assessed by FTIR showed presence of chlorides, and O–H and N–H bonds in guava, chloride and C–H bond in papaya, and chlorides, and C=O and C–H bonds in sapota. Particle size and type of starch were evaluated by X-ray diffraction and microstructure through scanning electronic microscopy. A semicrystalline profile and average particle size of the fruit powders were evidenced by X-ray diffraction and lamellar/spherical morphologies by SEM. Presence of A-type starch was observed in all three fruits. Dependence of electric and dielectric properties on frequency and temperature was observed.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
K. R. Nemade ◽  
S. A. Waghuley

Solvent mixed spray pyrolysis technique has attracted a global interest in the synthesis of nanomaterials since reactions can be run in liquid state without further heating. Magnesium oxide (MgO) is a category of the practical semiconductor metal oxides, which is extensively used as catalyst and optical material. In the present study, MgO nanoparticles were successfully synthesized using a solvent mixed spray pyrolysis. The X-ray diffraction pattern confirmed the formation of MgO phase with an excellent crystalline structure. Debye-Scherrer equation is used for the determination of particle size, which was found to be 9.2 nm. Tunneling electron microscope analysis indicated that the as-synthesized particles are nanoparticles with an average particle size of 9 nm. Meanwhile, the ultraviolet-visible spectroscopy of the resulting product was evaluated to study its optical property via measurement of the band gap energy value.


2018 ◽  
Vol 762 ◽  
pp. 408-412
Author(s):  
Raivis Eglītis ◽  
Gundars Mežinskis

In this work two different hydrosols were used to impregnate a commercially available cotton fabric with anatase nanoparticles to give it photocatalytic activity. To increase the activity, different pre-treatment methods were applied. The nanoparticle size was determined using dynamic light scattering and x-ray diffraction and the fabrics were examined using scanning electron microscopy. Photocatalytic activity was measured using the degradation of methyl-orange while irradiating the samples with UV light. The synthesis method allowed to produce anatase with an average particle size of 32 to 37 nm depending on the synthesis method used.


2014 ◽  
Vol 989-994 ◽  
pp. 611-614
Author(s):  
Ling Li ◽  
Wen Ming Zhang ◽  
Hua Yan Zhang ◽  
Zi Hao Xu ◽  
Sen Wang ◽  
...  

Vanadium/iron co-doped nanoTiO2 transparent hydrosol with an average particle size of 3.8 nm was synthesized by a novel complexation-controlled hydrolysis method at room temperature and atmospheric pressure by using TiCl4, ferric nitrate, ammonium metavanadate, etc. as raw materials. The composition, phase structure, particle size, absorbance spectrum, and photocatalytic performance of samples were characterized by XRD, EDS, nanolaser particle size analyzer, and UV-Vis spectrophotometer. The photocatalytic properties of V/Fe doped TiO2 were studied through degrading acid 3R dye, and the results show that when the content of V/Fe was 0.5%, the degradation rate reached more than 96% under irridation for 60 min.


2006 ◽  
Vol 962 ◽  
Author(s):  
Z. Q. Wang ◽  
K. B. Yin ◽  
F. Gao ◽  
K. F. Wang ◽  
Z. F. Ren ◽  
...  

ABSTRACTNd0.5Ca0.5MnO3 (NCMO) and Nd0.5Sr0.5MnO3 (NSMO) nanoparticles have been synthesized using microemulsion synthesis method, with hexamethylene alkyl, a mixture of OP and 1-hexanol, NaOH as oil phase, surfactant, and precipitating agent, respectively. The phase formation of NCMO and NSMO nanoparticles was examined. The final NCMO and NSMO nanoparticles have average particle size of 24 and 50 nm, respectively, and present high-quality crystallinity. Measurements of the magnetic properties suggest that the charge-order state favored for bulk NCMO phase collapses in NCMO nanoparticles. The spin freezing behavior for both NCMO and NSMO nanoparticles was identified.


2014 ◽  
Vol 793 ◽  
pp. 151-158 ◽  
Author(s):  
M. León-Carriedo ◽  
C.A. Gutiérrez Chavarría ◽  
J.L. Rodríguez Galicia ◽  
Jorge López-Cuevas ◽  
M.I. Pech Canul

In the present work, the characterization of monolithic materials formulated at different weight concentrations was conducted; employing two of the ceramic materials most used in the refractory industry, zircon and alumina. These monolithic materials were fabricated using colloidal techniques, specifically plaster casting mold, in order to obtain pieces with a higher particle consolidation and density, reducing porosity to lower values than the obtained using traditional shaping process of these materials. The monoliths were obtained employing two ceramic powders with different average particle size and morphology to achieve better packing in the green body. This characterization was carried out, firstly, determining the particle size of the raw materials by laser diffraction and the evaluation of particle morphology by scanning electron microscopy. Aqueous suspensions were formulated by containing both ceramic materials, which were dispersed with Tamol 963, and analyzed by rheometric techniques. Subsequently, bars were manufactured having the following dimensions; 4 mm wide, 3 mm thick and 45 mm in length, according to ASTM C1161-02cc, to be characterized microstructural and mechanically, also was observed the fracture habit after the mechanical test. As a final result, the materials formulated at higher alumina content showed higher density values, reaching 94.95% of the theoretical density, also showed a higher thermal expansion coefficient and high rupture modulus, reaching up to 600 MPa and Young modulus of 230 GPa. From the microstructure characterization it was observed that alumina matrix shows a transgranular fracture across the grains and zircon particles exhibited intergranular fracture among the grain boundaries.


Sign in / Sign up

Export Citation Format

Share Document