The Preparation and Characteristics of Chitosan-Acetaminophen Drug-Loading Micropheres

2012 ◽  
Vol 586 ◽  
pp. 161-165 ◽  
Author(s):  
Hao Ran Zhou ◽  
Jing Yu Zhang ◽  
Hao Jiang

CS-ACAP drug-loading microsperes are prepared with using CS and ACAP as the main raw materials by emulsification-crosslinking method. Orthogonal experiment was designed to optimize the preparation process of the CS-ACAP drug-loading microspheres. FT-IR and SEM were applied to characterize the structure and morphology of microspheres. The sustained release effect of CS-ACAP microsphere was measured by sustained release measurement. The results showed that the CS-ACAP drug-loading micropheres were successfully prepared by emulsification-crosslinking method. Obtained microspheres as a perforated sphere, the average particle size of the microspheres was 30μm and the microspheres had a uniformly particle size distribution; the drug-loaded microspheres had good sustained release effect.

2013 ◽  
Vol 544 ◽  
pp. 3-7 ◽  
Author(s):  
Jin Sheng Li ◽  
Xu Dong Sun ◽  
Shao Hong Liu ◽  
Di Huo ◽  
Xiao Dong Li ◽  
...  

Fine yttrium stearate powder was produced at a relatively low temperature using yttrium nitrate hexahydrate, ammonia and stearic acid as the raw materials. Dispersed Y2O3 nanopowder was synthesized by calcining the yttrium stearate. The formation mechanism of the precursor and the Y2O3 nanopowder was studied by means of XRD, TG-DTA, FT-IR, BET, FE-SEM and HR-TEM. Pure and dispersed Y2O3 nanopowder with an average particle size of 30 nm was produced by calcining the precursor at 600 °C. The particle size increases to about 60 nm with the increase of the calcination temperature to 1000 °C. In the preparation of Y2O3 from yttrium stearate, no water medium is involved, thus capillarity force and bridging of adjacent particles by hydrogen bonds can be avoided, resulting in good dispersion of the particles. The dispersed Y2O3 nanopowder prepared in this work has potential application in phosphors and transparent ceramic materials.


2013 ◽  
Vol 763 ◽  
pp. 112-116
Author(s):  
Hao Ran Zhou ◽  
Hao Jiang ◽  
Xiao Jiao Fang ◽  
Shuang Zhao ◽  
Cui Guo

Chitosan (CS) is an important slow-release carrier of drugs and fertilizers. The pure chitosan have poor performance, it should be added to a certain amount of crosslinking agents, emulsifiers and porogenic agents to improve the performance of it. The advantage of montmorillonite is no pollution and no toxicity, composite material filled in montmorillonite has an excellent mechanical properties. In this article, CS/MMT/ACAP drug-loading microsperes was prepared with the CS, ACAP and MMT as the main raw materials by emulsification-crosslinking method. Orthogonal experiment was designed to optimize the preparation process of the CS/MMT/ACAP drug-loading microspheres. FT-IR, XRD and SEM were applied to characterize the structure and morphology of microspheres. The sustained release effect of CS/MMT/ACAP microsphere was measured by sustained release measurement. The results show that the CS/MMT/ACAP drug-loading micropheres were successfully prepared by emulsification-crosslinking method. The microspheres assumed a good sphericity and a uniform particle size distribution; the drug-loading microspheres had good sustained release effect.


2020 ◽  
Vol 27 (22) ◽  
pp. 3623-3656 ◽  
Author(s):  
Bruno Fonseca-Santos ◽  
Patrícia Bento Silva ◽  
Roberta Balansin Rigon ◽  
Mariana Rillo Sato ◽  
Marlus Chorilli

Colloidal carriers diverge depending on their composition, ability to incorporate drugs and applicability, but the common feature is the small average particle size. Among the carriers with the potential nanostructured drug delivery application there are SLN and NLC. These nanostructured systems consist of complex lipids and highly purified mixtures of glycerides having varying particle size. Also, these systems have shown physical stability, protection capacity of unstable drugs, release control ability, excellent tolerability, possibility of vectorization, and no reported production problems related to large-scale. Several production procedures can be applied to achieve high association efficiency between the bioactive and the carrier, depending on the physicochemical properties of both, as well as on the production procedure applied. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes Lipid-based nanocarriers (LNCs) versatile delivery system for various routes of administration. The route of administration has a significant impact on the therapeutic outcome of a drug. Thus, the non-invasive routes, which were of minor importance as parts of drug delivery in the past, have assumed added importance drugs, proteins, peptides and biopharmaceuticals drug delivery and these include nasal, buccal, vaginal and transdermal routes. The objective of this paper is to present the state of the art concerning the application of the lipid nanocarriers designated for non-invasive routes of administration. In this manner, this review presents an innovative technological platform to develop nanostructured delivery systems with great versatility of application in non-invasive routes of administration and targeting drug release.


Author(s):  
Sumit Kumar ◽  
Dinesh Chandra Bhatt

Fabrication and evaluation of the Isoniazid loaded sodium alginate nanoparticles (NPs) was main objective of current investigation. These NPs were engineered using ionotropic gelation technique. The NPs fabricated, were evaluated for average particle size, encapsulation efficiency, drug loading, and FTIR spectroscopy along with in vitro drug release. The particle size, drug loading and encapsulation efficiency of fabricated nanoparticles were ranging from 230.7 to 532.1 nm, 5.88% to 11.37% and 30.29% to 59.70% respectively. Amongst all batches studied formulation F-8 showed the best sustained release of drug at the end of 24 hours.


2021 ◽  
Vol 13 (9) ◽  
pp. 1691-1698
Author(s):  
Hongzhe Liu ◽  
Kai Tong ◽  
Ziyi Zhong ◽  
Gang Wang

To explore the effect of hydrogen sulfide (H2S) drug-loaded nanoparticles (H2S-NPs) on the mTOR/STAT3 signaling pathway in rats and its mechanism on repair of spinal cord injury (SCI), a new H2S-NP (G16MPG-ADT) was prepared and synthesized. The rats were selected as the research objects to explore the mechanism of SCI repair. The G16MPG-ADT NPs were evaluated by average particle size (APS), dispersion coefficient (DC), drug loading content (DLC), drug loading efficacy (DLE), in vitro release (IV-R), and acute toxicity (AT). It was found that G16MPG-ADT nanoparticles had a uniform particle size distribution with a unimodal distribution, with an average particle size of 186.5 nm and a dispersion coefficient of 0.129; within the concentration range of 8~56 μg/L, there was a good linear relationship with the peak area; and the release rate of the nanoparticles within 16 h~32 h was higher than 50%. G16MPG-ADT NP injection treatment was performed on rats with SCI. Western blotting (WB) and immunofluorescence staining were adopted to analyze the expression levels of mammalian target of rapamycin (mTOR) and signal transducers and activators of transcription (STAT3) protein and the growth of neurites. It was found that G16MPG-ADT can increase mTOR and STAT3 protein levels and promote nerve growth after SCI. Finally, the Basso, Beattie and Bresnahan locomotor rating (BBB) score was to evaluate the recovery effect of rats after treatment. It was found that the recovery effect was excellent after G16MPG-ADT treatment. In summary, G16MPG-ADT has a good effect on SCI repair in rats and can be promoted in the clinic.


2014 ◽  
Vol 989-994 ◽  
pp. 611-614
Author(s):  
Ling Li ◽  
Wen Ming Zhang ◽  
Hua Yan Zhang ◽  
Zi Hao Xu ◽  
Sen Wang ◽  
...  

Vanadium/iron co-doped nanoTiO2 transparent hydrosol with an average particle size of 3.8 nm was synthesized by a novel complexation-controlled hydrolysis method at room temperature and atmospheric pressure by using TiCl4, ferric nitrate, ammonium metavanadate, etc. as raw materials. The composition, phase structure, particle size, absorbance spectrum, and photocatalytic performance of samples were characterized by XRD, EDS, nanolaser particle size analyzer, and UV-Vis spectrophotometer. The photocatalytic properties of V/Fe doped TiO2 were studied through degrading acid 3R dye, and the results show that when the content of V/Fe was 0.5%, the degradation rate reached more than 96% under irridation for 60 min.


2014 ◽  
Vol 793 ◽  
pp. 151-158 ◽  
Author(s):  
M. León-Carriedo ◽  
C.A. Gutiérrez Chavarría ◽  
J.L. Rodríguez Galicia ◽  
Jorge López-Cuevas ◽  
M.I. Pech Canul

In the present work, the characterization of monolithic materials formulated at different weight concentrations was conducted; employing two of the ceramic materials most used in the refractory industry, zircon and alumina. These monolithic materials were fabricated using colloidal techniques, specifically plaster casting mold, in order to obtain pieces with a higher particle consolidation and density, reducing porosity to lower values than the obtained using traditional shaping process of these materials. The monoliths were obtained employing two ceramic powders with different average particle size and morphology to achieve better packing in the green body. This characterization was carried out, firstly, determining the particle size of the raw materials by laser diffraction and the evaluation of particle morphology by scanning electron microscopy. Aqueous suspensions were formulated by containing both ceramic materials, which were dispersed with Tamol 963, and analyzed by rheometric techniques. Subsequently, bars were manufactured having the following dimensions; 4 mm wide, 3 mm thick and 45 mm in length, according to ASTM C1161-02cc, to be characterized microstructural and mechanically, also was observed the fracture habit after the mechanical test. As a final result, the materials formulated at higher alumina content showed higher density values, reaching 94.95% of the theoretical density, also showed a higher thermal expansion coefficient and high rupture modulus, reaching up to 600 MPa and Young modulus of 230 GPa. From the microstructure characterization it was observed that alumina matrix shows a transgranular fracture across the grains and zircon particles exhibited intergranular fracture among the grain boundaries.


2012 ◽  
Vol 184-185 ◽  
pp. 1146-1149
Author(s):  
Ping Li ◽  
Hai Yang Wang ◽  
Wan E Wu ◽  
Shuai Ling

To reduce average particle size,magnesium fluoride was directly synthesized from MgF2 and NH4F,the product was characterized by X-ray diffractomer,scanning electron microscopy. Orthogonal experiment was used to explore the influences of factors on the average particle size. Found that the effect order of factors on the average particle size is MgCl2 concentration,NH4F concentration,reaction temperature,reaction time,in the optimization of process conditions,average particle size is 23.1 nm.


2012 ◽  
Vol 549 ◽  
pp. 183-187 ◽  
Author(s):  
Yan Wang ◽  
Jia Ying Xin ◽  
Tie Liu ◽  
Kai Lin ◽  
Chao Yue Zhang ◽  
...  

Native corn starch (NS) was activated by treatment with NaOH /Urea /H2O solution at low temperature to improve its chemical reactivity. Effects of the activation on the molecular level structure and morphology of the corn starch were investigated by mean of SEM. It was found that the average particle size of activated corn starch (AS) decreased to nanometer level, smaller than those of NS. The cold water solubility (CWS) has been increased from 0.45% to 96.4%. Effects of the activation on reactivity of the corn starches were investigated by analyzing the influences of the activation on degrees of substitutions (DS) of the esterifications. The DS of AS was higher than that of NS, from 0 to 0.1578, which indicated that NaOH/urea activation enhanced the chemical reaction activity of corn starch.


2018 ◽  
Vol 8 (4) ◽  
pp. 617-625 ◽  
Author(s):  
Sachin Kumar ◽  
Ramneek Kaur ◽  
Rashi Rajput ◽  
Manisha Singh

Purpose: Biopharmaceutics classification system (BCS) class IV compounds, exhibits least oral bioavailability, low solubility and intestinal permeability among all pharmaceutical classes of drugs. Thus, these drugs need more compatible and efficient delivery system. Since, their solubility in various medium, remains a limitation so, polymeric nano coacervates based drug loading with modified approach for them may prove to be a solution ahead. Therefore, in present study Chitosan is opted for encapsulating the BCS class IV drug (Hydrochlorothiazide) to attain better stability, enhanced permeability and lower toxicity. Methods: For this study, Hydrochlorothiazide (HCTZ) was opted for formulating chitosan based nano-coacervate system. Results: Optimized HCTZ nanocoacervates exhibited the average particle size of 91.39 ± 0.75 nm with Poly-dispersity index score of 0.159 ± 0.01, indicating homogeneity of colloidal solution. Zeta potential and encapsulation efficiency of HCTZ nanocoacervates were recorded as -18.9 ± 0.8 mV and 76.69 ± 0.82 % respectively. Further, from TEM and SEM evaluation the average particle size for the same were found in conformity (35-50 nm), with almost spherical morphology. Also, the EDX (Electron Dispersive X-ray) spectrometry and FT – IR analysis of optimized formulation indicated the balanced chemical composition and interaction between the polymeric molecules. The HCTZ nano coacervates showed the linear diffusion profile through the dialysis membrane. Conclusion: We can conclude from the present study that the optimized HCTZ nano coacervates may prove to be a suitable potential option for effective delivery of BCS class IV drugs.


Sign in / Sign up

Export Citation Format

Share Document