Optimization of Washing Conditions with Lipase by Response Surface Methodology

2012 ◽  
Vol 441 ◽  
pp. 625-630
Author(s):  
Chen Ying Xu ◽  
Jiang Ren ◽  
Jian Zhong Shao

Response surface methodology (RSM) was employed to optimize the washing conditions. A four-factorial three-level Box-Behnken partial orthogonal design was chosen to explain the washing process based on four critical factors, detergent concentration, lipase concentration, washing temperature and buffer pH. According to the responses from the experimental model, the effects of each variable were assessed and the interactions between variables were also determined. The experiment suggested that the optimal conditions for removal of olive oil from the cotton fabrics were 0.60g/L detergent, 4.37g/L lipase, washing temperature of 25.06 and buffer pH of 7.29. By actual washing confirmation, the wetting time of the washed fabric under the optimal condition was 0.51s. Home laundry could be conducted at low temperature with addition of lipase.

2012 ◽  
Vol 550-553 ◽  
pp. 1866-1870
Author(s):  
Xiao Dan Tang ◽  
Hai Yang Hang ◽  
Shao Yan Wang ◽  
Jing Xiang Cong

Gypenosides III is a major bioactive component which is rich in Gynostemma pentaphyllum. For better utilization of the native resource, response surface methodology was used to optimize the extraction conditions of gypenosides III from G. pentaphyllum. The effects of three independent variables on the extraction yield of gypenosides III were investigated and the optimal conditions were evaluated by means of Box-Behnken design. The optimal conditions are as follows: ratio of ethanol to raw material 25, extraction temperature 58°C and ultrasonic time 25min. Under these conditions, the yield of gypenoside III is 1.216±0.05%, which is agreed closely with the predicted yield value.


2020 ◽  
Vol 36 (4) ◽  
Author(s):  
Ega Soujanya Lakshmi ◽  
Manda Rama Narasinga Rao ◽  
Muddada Sudhamani

ABSTRACT Thirty seven different colonies were isolated from decomposing logs of textile industries. From among these, a thermotolerant, grampositive, filamentous soil bacteria Streptomyces durhamensis vs15 was selected and screened for cellulase production. The strain showed clear zone formation on CMC agar plate after Gram’s iodine staining.  Streptomyces durhamensis vs15 was further confirmed for cellulase production by estimating the reducing sugars through dinitrosalicylic acid (DNS) method. The activity was enhanced by sequential mutagenesis using three mutagens of ultraviolet irradiation (UV), N methyl-N’-nitro-N-nitrosoguanidine (NTG) and Ethyl methane sulphonate (EMS). After mutagenesis, the cellulase activity of GC23 (mutant) was improved to 1.86 fold compared to the wild strain (vs15). Optimal conditions for the production of cellulase by the GC 23 strain were evaluated using Response Surface Methodology (RSM) and Artificial Neural Network (ANN). Effect of pH, temperature, duration of incubation, , and substrate concentration on cellulase production were evaluated. Optimal conditions for the production of cellulase enzyme using Carboxy Methyl Cellulase as a substrate are 55 oC of temperature, pH of 5.0 and incubation for 40 h. The cellulase activity of the mutant Streptomyces durhamensis GC23 was further optimised to 2 fold of the activity of the wild type by RSM and ANN.  


2019 ◽  
Vol 8 (5) ◽  
pp. 372-379 ◽  
Author(s):  
Laila Makouki ◽  
Meriem Tarbaoui ◽  
Samia Glissi ◽  
Said Mansouri ◽  
Hassan Hannache ◽  
...  

The present article aims to optimize the decarbonization of Timahdit oil shale layer Y by removing carbonates from the raw rock using acetic acid. The response surface methodology “central composite design (CCD)” has been used as a method of optimization to study the 3 factors of the process. The factors studied are the concentration of the acid, the processing time, and the ratio (liquid/solid). The optimal conditions with 68.17% of residue rate are obtained with 2 mol/l as concentration, 120 min as a time of treatment and 10.02 for the ratio.The raw (Y) and optimized materials (YO) were characterized by Scanning Electron Microscopy (SEM), X-ray fluorescence (XRF) and X-ray diffraction (XRD). The results showed that the acetic acid used to remove carbonates affects the chemical composition and the texture evolution of the residues.


2017 ◽  
Vol 36 (2) ◽  
pp. 119-132 ◽  
Author(s):  
Sharjeel Abid ◽  
Tanveer Hussain ◽  
Ahsan Nazir ◽  
Zulfiqar Ali Raza ◽  
Amna Siddique ◽  
...  

In printing and resin finishing of cotton fabrics, the curing step is involved twice, firstly for fixation of reactive dye and secondly for the fixation of resin for proper cross-linking. In developing country like Pakistan, where cotton is a major portion of textile exports, the elimination of one fixation stage is economical and advantageous. This study dealt with the simultaneous fixation of wrinkle-free finish (resin) and reactive dye printing for cost effectiveness. The processed route of treatment imparted a maximum dry crease recovery angle of 230° and color strength up to 89.89%. The produced fabrics were characterized using crocking fastness (dry and wet), color strength sum %, color fastness to laundry, crease recovery angle, and wrinkle recovery by appearance method. Response surface optimizer gave good composite desirability value (0.08300) with color strength % of up to 73.73 and dry crease recovery angle up to 218°.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Maxiaoqi Zhu ◽  
Zhicai Zhang ◽  
Yiqiuyi Liu ◽  
Feng Wang ◽  
Lili Xia ◽  
...  

ε-Polylysine (ε-PL) is a highly safe natural food preservative with a broad antimicrobial spectrum, excellent corrosion resistances, and great commercial potentials. In the present work, we evaluated theε-PL adsorption performances of HZB-3B and D155 resins and optimized the adsorption and desorption conditions by single-factor test, response surface method, and orthogonal design. The complexes of resin andε-PL were characterized by SEM and FITR. The results indicated that D155 resin had the bestε-PL adsorption performance and was selected for the separation and purification ofε-PL. The conditions for the static adsorption ofε-PL on D155 resin were optimized as follows:ε-PL solution 40 g/L, pH 8.5, resins 15 g/L, and absorption time 14 h. The adsorption efficiency ofε-PL under the optimal conditions was 96.84%. Theε-PL adsorbed on the D155 resin was easily desorbed with 0.4 mol/L HCl at 30°C in 10 h. The highest desorption efficiency was 97.57% and the overall recovery ofε-PL was 94.49% under the optimal conditions. The excellentε-PL adsorption and desorption properties of D155 resin including high selectivity and adsorption capacity, easy desorption, and high stability make it a good candidate for the isolation ofε-PL from fermentation broths.


2020 ◽  
Vol 38 (3-4) ◽  
pp. 79-93
Author(s):  
Zahra Sheikhi Alman-Abad ◽  
Hossein Pirkharrati ◽  
Farrokh Asadzadeh ◽  
Mahdi Maleki-Kakelar

Heavy metal wastes generated from mining activities are a major concern in developing countries such as Iran. Increasing concentrations of these metals in the soil make up a severe health hazard due to their non-degradability and toxicity. In this study, batch washing experiments were conducted in order to investigate the removal efficiency of zinc by biodegradable chelates, tartaric acid. For this purpose, soil samples were collected from the zinc contaminated soil in the region of the Angouran, Zanjan, Iran. Hence, optimization of batch washing conditions followed using a three-level central composite design approach based on the response surface methodology. The results demonstrated that the effects of pH, tartaric acid concentration, and interaction between selective factors on the zinc removal efficiency were all positive and significant (P < 0.05). An optimum zinc removal efficiency of 89.35 ±2.12% was achieved at tartaric acid concentration of 200 mM l−1, pH of 4.46, and incubation time of 120 min as the optimal conditions. Accordingly, response surface methodology is appropriately capable to determine and optimize chemical soil washing process to remediate heavy metal polluted soil.


Author(s):  
Bao Zhang ◽  
Yunzhong Chen ◽  
Xuefei Wei ◽  
Mingqi Li ◽  
Mengjin Wang

The effects of liquid-solid ratio, acetic acid concentration and extraction time on the yield of acid-soluble collagen(ASC) from the swim bladders of grass carp were optimized by statistical analysis using response surface methodology. The response surface methodology (RSM) was used to optimize the yield of ASC by implementing the Box-Wilson design. Statistical analysis of the results showed that the linear and quadric terms of these three variables had significant effects. However, no interactions between the three variables were found to contribute to the response at a significant level. The optimal conditions for higher yield of ASC were a liquid-solid ratio of 17.85, an acetic-acid concentration of 0.54 M and a time of 34 h. Under these conditions, the model predicted an ASC yield of 8.39%. Verification of the optimization showed that an ASC yield of 8.21±0.15% was observed under the optimal conditions. The experimental values agreed with the predicted values, using analysis of variance, indicating an excellent fit of the model used and the success of response surface methodology for modeling extraction of ASC from the swim bladders of grass carp.


Sign in / Sign up

Export Citation Format

Share Document