Analysis of Numerical Simulation of Micropiles Reinforcing Shallow Landslide

2012 ◽  
Vol 446-449 ◽  
pp. 2663-2666 ◽  
Author(s):  
Hui He ◽  
Yan Bing Liu

Based on the predecessors’ achievements and combined with the engineering project of Jinquan temple landslide located in Hanzhong city of Shanxi province, this paper takes international general geotechnical engineering professional analysis software—FLAC3D to do the numerical simulation. The deformation characteristics and mechanical properties of micropiles in lateral loads are researched. Working performance and load transfer rule of micropiles are analyzed. It is useful for the design of micropiles in 3 rows. It also has positive significance on the construction and design of micropiles reinforcing shallow landslide.

2011 ◽  
Vol 90-93 ◽  
pp. 1736-1742
Author(s):  
Bin Tang ◽  
Ren Wang ◽  
Hong Xing Wang

Abstract: The numerical simulation of the deformation character in the effect of the unloading action for the surcharge preloading in the heap preloading treated foundation in the Sixin South Road in the New District in Wuhan is done through the finite element analysis software ABAQUS according to the engineering project ,and the following conclusions are gained:(1)on the surface of the foundation, the settlement at the center is the biggest, the settlement decreases with distance from the center of the surface, ,and at about 20m away from the center, the uplift is produced ;(2)after unloading, the resilience emerges in the places where the settlement was produced, and the uplift that was produced drops too;(3)the deformation on the axle of the foundation section at the end of the loading action and that at the end of the unloading action are similar to each other;(4) in the step loading-unloading condition, the deformation curves suit well with the loading-unloading curves.


2012 ◽  
Vol 568 ◽  
pp. 39-42
Author(s):  
Yu Zhuo Jia ◽  
Li Lin

SAP2000 structural analysis software is used to designed two of 500kV partially prestressed reactive powder concrete pole cross arm; moreover, poles of the two cross arm program have been compared. The results show that the triangular truss cross arm has good mechanical properties, improving the main mate’rial of the stress state, the pole reduced height 10m, by the analysis of the structure shows, this cross arm has higher reliability under the operating conditions, which can be used in 500kV transmission line; from economic and technical performance, the pole cost of this program is greatly reduced, while speeding up the construction progress and improving the comprehensive benefits of the poles in the transmission line.


2013 ◽  
Vol 351-352 ◽  
pp. 782-785
Author(s):  
Yong Bing Liu ◽  
Xiao Zhong Zhang

Established the mechanical model of simply supported deep beam, calculation and analysis of simple supported deep beams by using finite element analysis software ANSYS, simulated the force characteristics and work performance of the deep beam. Provides the reference for the design and construction of deep beams.


Author(s):  
Marcio Yamamoto ◽  
Sotaro Masanobu ◽  
Satoru Takano ◽  
Shigeo Kanada ◽  
Tomo Fujiwara ◽  
...  

In this article, we present the numerical analysis of a Free Standing Riser. The numerical simulation was carried out using a commercial riser analysis software suit. The numerical model’s dimensions were the same of a 1/70 reduced scale model deployed in a previous experiment. The numerical results were compared with experimental results presented in a previous article [1]. Discussion about the model and limitations of the numerical analysis is included.


2012 ◽  
Vol 204-208 ◽  
pp. 4455-4459 ◽  
Author(s):  
Liu Hong Chang ◽  
Chang Bo Jiang ◽  
Man Jun Liao ◽  
Xiong Xiao

The explicit dynamic finite element theory is applied on the collision of ships with buoys for computer simulation. Using ANSYS/LS-DYNA finite element analysis software, the numerical simulation of the collision between the ton ship and the buoy with different structures and impact points. The collision force, deformation, displacement parameters and the weak impact points of a buoy are obtained. Based on the numerical simulation results, analysis of buoys and structural collision damages in anti-collision features are discussed, and several theoretical sugestions in anti-collision for the design of buoy are provided.


2006 ◽  
Vol 321-323 ◽  
pp. 451-454
Author(s):  
Joo Young Yoo ◽  
Sung Jin Song ◽  
Chang Hwan Kim ◽  
Hee Jun Jung ◽  
Young Hwan Choi ◽  
...  

In the present study, the synthetic signals from the combo tube are simulated by using commercial electromagnetic numerical analysis software which has been developed based on a volume integral method. A comparison of the simulated signals to the experiments is made for the verification of accuracy, and then evaluation of five deliberated single circumferential indication signals is performed to explore a possibility of using a numerical simulation as a practical calibration tool. The good agreement between the evaluation results for two cases (calibration done by experiments and calibration made by simulation) demonstrates such a high possibility.


2017 ◽  
Vol 84 (8) ◽  
Author(s):  
Ruike Zhao ◽  
Xuanhe Zhao

Structures of thin films bonded on thick substrates are abundant in biological systems and engineering applications. Mismatch strains due to expansion of the films or shrinkage of the substrates can induce various modes of surface instabilities such as wrinkling, creasing, period doubling, folding, ridging, and delamination. In many cases, the film–substrate structures are not flat but curved. While it is known that the surface instabilities can be controlled by film–substrate mechanical properties, adhesion and mismatch strain, effects of the structures’ curvature on multiple modes of instabilities have not been well understood. In this paper, we provide a systematic study on the formation of multimodal surface instabilities on film–substrate tubular structures with different curvatures through combined theoretical analysis and numerical simulation. We first introduce a method to quantitatively categorize various instability patterns by analyzing their wave frequencies using fast Fourier transform (FFT). We show that the curved film–substrate structures delay the critical mismatch strain for wrinkling when the system modulus ratio between the film and substrate is relatively large, compared with flat ones with otherwise the same properties. In addition, concave structures promote creasing and folding, and suppress ridging. On the contrary, convex structures promote ridging and suppress creasing and folding. A set of phase diagrams are calculated to guide future design and analysis of multimodal surface instabilities in curved structures.


Sign in / Sign up

Export Citation Format

Share Document