Analysis on Causes of Crack in Multiple-Arch Tunnel

2012 ◽  
Vol 446-449 ◽  
pp. 3072-3075 ◽  
Author(s):  
Qin Qin

This paper present a numerical simulation on multiple-arch tunnel crack, Analyzes the reason of multiple-arch tunnel cracking, summarizes the crack formation mechanism of multiple-arch tunnel and the influence factors of cracks, then some attention should be paid in multiple-arch tunnel design and construction.

Author(s):  
Shengyong Hu ◽  
Shuwen Guan ◽  
Guorui Feng ◽  
Xitu Zhang ◽  
Yunbo Chen ◽  
...  

2013 ◽  
Vol 353-356 ◽  
pp. 692-695
Author(s):  
Chang Zhi Zhu ◽  
Quan Chen Gao

Based on an Engineering Example which was supported by the stepped soil-nail wall, a numerical analysis model was established by FLAC3D,and the process of the excavation and supporting was simulated, and the numerical results of the soil nails internal force and foundation pit deformation were obtained. The simulated result was consistent with the measured results. It shows that the method of FLAC3D numerical analysis can be used to the numerical analysis of foundation pit excavation and supporting, and it will provide the basis for the design and construction of practice project.


2014 ◽  
Vol 501-504 ◽  
pp. 248-253
Author(s):  
Liu Yong Cheng ◽  
Shan Xiong Chen ◽  
Xi Chang Xu ◽  
Xiao Jie Chu ◽  
Tong Bing Lei

The regular pattern of the lateral friction transmission is one of the most critical influences on the ultimate uplift bearing capacity. The pile foundation in the incline under the pulling force has a wide variety of characteristics which is different with the normal pile. Numerical simulation is done by the use of FLAC3D in this paper. The regular pattern of the lateral friction transmission of the pile in the incline under the pulling force is studied. And the influence factors on the lateral friction transmission such as the slope gradient, the length and location of piles are discussed. The results show that the incline has a great influence on the lateral friction transmission. The lateral friction which is away from the incline-side is about 30% to 50% bigger than the incline-side. The slope gradient and the location of piles all have a great influence on the lateral friction transmission.


2017 ◽  
Vol 898 ◽  
pp. 1276-1282
Author(s):  
Wen Li Hu ◽  
Yuan Xiang Zhang ◽  
Guo Yuan ◽  
Guo Dong Wang

High silicon steel was fabricated by twin-roll strip casting. The cracks on the surfaces of the processed strips were obtained and analyzed by digital camera after series of surface treatment. Optical microscopy (OM) and scanning electron microscopy (SEM) were used to observe and characterize the microstructure nearby crack and fracture surface along the normal direction, respectively, and the crack formation mechanism was further analyzed in conjunction with processing parameters utilized during twin-roll strip casting process. The results indicated that morelongitudinal cracks along the rolling direction were observed in comparison with transverse cracks along the transverse direction on the strip surfaces. Trans granular and intergranular fracture modes both worked during the formations of longitudinal and transverse cracks on the processed strips. The dominant factor causing the formation of crack on the surface of the processed strips was the inhomogeneous transfer of heat during casting and rolling. The inhomogeneous transfer of heat induced by gas gap during casting resulted in variations of dendrite length and secondary dendrite spacing (SDAS). Meanwhile, the casting velocity influenced the formation of gas gap, which further influenced the thermal contraction. So the control of velocity of casting above a certain level proved beneficial to enhancing the performance of strip casting and to improving the quality of strip products.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Qing Dong ◽  
Zheng-hua Zhou ◽  
Su Jie ◽  
Bing Hao ◽  
Yuan-dong Li

At engineering practice, the theoretical basis for the cross-over method, used to obtain shear wave arrival time in the downhole method of the wave velocity test by surface forward and backward strike, is that the polarity of P-wave keeps the same, while the polarity of S-wave transforms when the direction of strike inverted. However, the characteristics of signals recorded in tests are often found to conflict with this theoretical basis for the cross-over method, namely, the polarity of the P-wave also transforms under the action of surface forward and backward strike. Therefore, 3D finite element numerical simulations were conducted to study the validity of the theoretical basis for the cross-over method. The results show that both shear and compression waves are observed to be in 180° phase difference between horizontal signal traces, consistent with the direction of excitation generated by reversed impulse. Furthermore, numerical simulation results prove to be reliable by the analytic solution; it shows that the theoretical basis for the cross-over method applied to the downhole wave velocity test is improper. In meanwhile, numerical simulations reveal the factors (inclining excitation, geophone deflection, inclination, and background noise) that may cause the polarity of the P-wave not to reverse under surface forward and backward strike. Then, as to reduce the influence factors, we propose a method for the downhole wave velocity test under surface strike, the time difference of arrival is based between source peak and response peak, and numerical simulation results show that the S-wave velocity by this method is close to the theoretical S-wave velocity of soil.


Sign in / Sign up

Export Citation Format

Share Document