Experimental Research on Seismic Performance of Cast-In Situ RC Grillage Shear Walls Formed with Heat Preservation Hollow Blocks

2012 ◽  
Vol 446-449 ◽  
pp. 672-678 ◽  
Author(s):  
Wei Jing Zhang ◽  
Yi Nan Du ◽  
Jia Ru Qian

As a new type of structural system, the cast-in-situ reinforced concrete grillage shear wall system has functions of formwork, strength and heat preservation at the same time. It is suitable for residential buildings in seismic and non-seismic areas. The results of quasi-static tests on 20 specimens of small and large grid size grillage shear walls with different shear span ratios show that: both of small and large grid size grillage shear walls have excellent seismic performance; shear or bending deformation of horizontal and vertical limbs dissipate seismic energy so the elastic-plastic deformability of grillage shear walls meet the requirements of shear wall structure under strong earthquakes; the bearing capacity of grillage shear wall was calculated with formulas used for solid RC shear walls. The equivalent thickness of grillage shear wall equalized as solid shear wall is determined by elastic finite element analysis.

2011 ◽  
Vol 368-373 ◽  
pp. 1943-1948 ◽  
Author(s):  
Liang Chen ◽  
Zhong Fan Chen

CTSRC structure is a new composite structural system for residential buildings and it consists of walls and floors which are made of the prefabricated steel skeleton and the infill of concrete. Four pieces of CTSRC shear wall specimens and one piece of RC shear wall specimen are tested under low cyclic lateral loads to study the final failure modes and analyze its structural seismic performance. It shows that the CTSRC shear wall structure possess adequate bearing capacity, fine seismic performance and ductility. CTSRC shear walls are better than RC shear walls in the seismic behavior, and it could replace traditional shear walls structure applying to practical engineering. Inserting ring used for connecting profile steel can transfer stress well and it is recognized as a reasonable construction measure.


2011 ◽  
Vol 295-297 ◽  
pp. 1489-1493 ◽  
Author(s):  
Min Wei Zhu ◽  
Yuan Zhen Liu

The composite shear wall system with permanent thermal-insulation wall form of glazed hollow bead is a new kind of energy-saving building. the experimental study on the seismic performance of composite shear wall structure was proposed. Through the tests of the walls with different shear-span ratio and axial compression ratio under vertical force and low cyclic horizontal load, the seismic behaviors of slitted shear walls under low cyclic load tests were studied. Through the expemental study, the calculation methods for load-bearing capacity of walls with different shear-span ratio were obtained. And then the laws for the energy dissipation and ductility feature were revealed. Besides, the comparison analysis were made on the seismic behaviors between composite shear walls and common shear walls.The study could provide a foundation for the designing evaluating on the performance for the new structure.


2021 ◽  
Vol 11 (24) ◽  
pp. 12131
Author(s):  
Tan Wang ◽  
Ruinian Jiang ◽  
Shuaifeng Yuan ◽  
Kuo Yuan ◽  
Liwei Li ◽  
...  

Prefabricated shear walls have been widely used in engineering structures. Vertical connection joints of the walls are the key to ensure the safety of the structures. Steel–concrete composite structures have been proved to have a good bearing capacity and ductility. In this paper, a new type of prefabricated structure is proposed, in which vertical wall members are connected together through built-in steel sections and cast-in-place concrete. This paper studies the seismic performance of the proposed prefabricated concrete shear wall structure. Hysteretic curves and skeleton curves of the shear wall are obtained based on experimental analyses. A dimensionless skeleton curve model is developed using the theory of material mechanics and the method of regression analysis. A stiffness calculation method for different loading stages is obtained and a restoring force model is proposed. The proposed innovative prefabricated shear wall structure provides good resistance to seismic performance and the related analysis provides a fundamental reference for studies of prefabricated shear wall structures.


2012 ◽  
Vol 174-177 ◽  
pp. 2012-2015
Author(s):  
Xiao Long Zhou ◽  
Ying Min Li ◽  
Lin Bo Song ◽  
Qian Tan

There are two typical seismic damage characteristics to the masonry building with frame shear wall structure at first two stories, and the lateral stiffness ratio of the third storey to the second storey is one of the key factors mostly affecting the seismic performance of this kind of building. However, some factors are not considered sufficiently in current Chinese seismic codes. According to the theory of performance-based seismic design, the seismic performance of this kind of structure is analyzed in this paper by taking time-history analysis on models which with different storey stiffness ratios. The results show that when the lateral stiffness ratio controlled in a reasonable range, the upper masonry deformation can be ensured in a range of elastic roughly, and the bottom frame can be guaranteed to have sufficient deformation and energy dissipation capacity. Finally, according to the seismic performance characteristics of masonry building with frame shear wall structure at first two stories, especially the characteristics under strong earthquakes, a method of simplified calculation model for the upper masonry is discussed in this paper.


2013 ◽  
Vol 353-356 ◽  
pp. 1990-1999
Author(s):  
Yi Sheng Su ◽  
Er Cong Meng ◽  
Zu Lin Xiao ◽  
Yun Dong Pi ◽  
Yi Bin Yang

In order to discuss the effect of different concrete strength on the seismic behavior of the L-shape steel reinforced concrete (SRC) short-pier shear wall , this article analyze three L-shape steel reinforced concrete short-pier shear walls of different concrete strength with the numerical simulation software ABAQUS, revealing the effects of concrete strength on the walls seismic behavior. The results of the study show that the concrete strength obviously influence the seismic performance. With the concrete strength grade rise, the bearing capacity of the shear wall becomes large, the ductility becomes low, the pinch shrinkage effect of the hysteresis loop becomes more obvious.


2017 ◽  
Vol 21 (9) ◽  
pp. 1327-1348
Author(s):  
Cong Chen ◽  
Renjie Xiao ◽  
Xilin Lu ◽  
Yun Chen

Structure with replaceable devices is a type of earthquake resilient structure developed to restore the structure immediately after strong earthquakes. Current researches focus on one type of the replaceable device located in the structural part that is most likely to be damaged; however, plastic deformation would not be limited in a specific part but expand to other parts. To concentrate possible damage in shear wall structures, combined form of replaceable devices was introduced in this article. Based on previous studies, combined form of replaceable coupling beam and replaceable wall foot was used in a coupled shear wall. Influences of the dimension and location of the replaceable devices to the strength and stiffness of the shear wall were investigated through numerical modeling, which was verified by experimental data. Performance comparison between the shear walls with one type and combined form of replaceable devices and the conventional coupled shear wall was performed. In general, the shear wall with combined form of replaceable devices is shown to be better energy dissipated, and proper dimensions and locations of the replaceable devices should be determined.


2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Min Gan ◽  
Yu Yu ◽  
Liren Li ◽  
Xisheng Lu

Four test pieces with different steel plate center-to-center distances and reinforcement ratios are subjected to low-cycle repeat quasistatic loading to optimize properties as failure mode, hysteretic curve, skeleton curve, energy dissipation parameters, strength parameters, and seismic performance of high-strength concrete low-rise shear walls. The embedded steel plates are shown to effectively restrict wall crack propagation, enhance the overall steel ratio, and improve the failure mode of the wall while reducing the degree of brittle failure. Under the same conditions, increasing the spacing between the steel plates in the steel plate concrete shear wall can effectively preserve the horizontal bearing capacity of the shear wall under an ultimate load. The embedded steel plates perform better than concealed bracing in delaying stiffness degeneration in the low-rise shear walls, thus safeguarding their long-term bearing capacity. The results presented here may provide a workable basis for shear wall design optimization.


Sign in / Sign up

Export Citation Format

Share Document