Optimization of Dimensions of a Sandwich Structure Using Genetic Algorithm (GA)

2008 ◽  
Vol 47-50 ◽  
pp. 371-374 ◽  
Author(s):  
Mohammad Reza Khoshravan ◽  
M. Hosseinzadeh

Optimum height of the core and thickness of the composite faces of a sandwich panel under a defined loading have been computed in order to obtain the lowest weight of structure and its highest stiffness. Either by choosing adequate lay up sequence of multilayer composite faces, desired properties of the composite faces was chosen. The Genetic Algorithm (GA) based on statistics was used and to obtain the best methods of G.A., sensitivity analysis was carried out. In result, the influence of sensitivity analysis was found useful because it leaded to a better convergence of problem and decreased the execution time of the problem.

2013 ◽  
Vol 694-697 ◽  
pp. 216-220 ◽  
Author(s):  
Lin Chen ◽  
Xiao Zhong Xie ◽  
Zhuo Li ◽  
Ye Qing Jin

Sandwich panels with a V-type corrugated core are developed to investigate their crushing performance under lateral load based on the numerical method. The validity and feasibility of the calculation method is qualified by comparing numerical results with experiment results. Based on that, finite element software is applied to analyze the effects of structural parameters on the crushing performance of sandwich structure. Then inspecific energy increases as the core thickness and inclination angle are increased, but it will induce as the core height is raised. Additionally, the average crushing strength is increased with the increasing thickness, but it will decrease as the core height and inclination angle are raised. The results of this research may help the practical design and optimization of sandwich panel with corrugated core.


2018 ◽  
Vol 22 (7) ◽  
pp. 2421-2444
Author(s):  
Guangtao Wei ◽  
Lijia Feng ◽  
Linzhi Wu

A new theoretical model based on the extended high order sandwich panel theory is established to predict the mechanical response of sandwich panels under static loads with the bilinear constitutive stress–strain relation in the core. The constitutive relations of normal stresses related to the longitudinal and vertical normal strains in the bilinear isotropic hardening core are first formulated. The influence of the in-plane rigidity on the elastoplastic response of sandwich structures is analyzed. An in-plane loaded sandwich structure with the bilinear core is first studied based on extended high order sandwich panel theory, and the effect of the bilinear ratio on the mechanical response is evaluated. The governing equations are derived from the principle of minimum potential energy, and a Ritz-based half-analytical method is applied to get the solutions. The plastic response is acquired by an iterative procedure along with the convergence criteria. The results reveal that the local effect can be captured when the axial rigidity of the core is considered. The bilinear characteristic of the core decreases the maximum normal stress with an increase of the average value. The equivalent plastic region extends with the increase of the bilinear ratio when the sandwich structure is loaded in plane. By comparison with open literatures and finite element results, the present theoretical model is proved to be effective and efficient.


2019 ◽  
Vol 2 (5) ◽  
Author(s):  
Mengda Zhang ◽  
Chenjing Zhou ◽  
Tian-tian Zhang ◽  
Yan Han

Selecting check index quantitatively is the core of the calibration of micro traffic simulation parameters at signal intersection. Five indexes in the node (intersection) module of VISSIM were selected as the check index set. Twelve simulation parameters in the core module were selected as the simulation parameters set. Optimal process of parameter calibration was proposed and model of the intersection of Huangcun west street and Xinghua street in Beijing was built in VISSIM to verify it. The sensitivity analysis between each check index and simulation parameter in their own set was conducted respectively. Sensitive parameter sets of different check indices were obtained and compared. The results show that different indexes have different size of set, and average vehicle delay's is maximum, so it's necessary to select index quantitatively. The results can provide references for scientific selection of the check indexes and improve the study efficiency of parameter calibration.


2013 ◽  
Vol 61 (1) ◽  
pp. 201-210 ◽  
Author(s):  
R. Studziński ◽  
Z. Pozorski ◽  
A. Garstecki

Abstract The paper addresses the problems of the sensitivity analysis and optimal design of multi-span sandwich panels with a soft core and flat thin steel facings. The response functional is formulated in a general form allowing wide practical applications. Sensitivity gradients of this functional with respect to dimensional, material and support parameters are derived using adjoint variable method. These operators account for the jump of the slope of a Timoshenko beam or a Reissner plate at the position of concentrated active load or reaction, thus extending the sensitivity operators known in literature. The jump of slope is the effect of shear deformation of the core. Special attention is focussed on sensitivity and optimisation allowing for variable support position and stiffness, because local phenomena observed in supporting area of sandwich plates often initiate failure mechanisms. Introducing optimally located elastic supports allows to reduce the unfavourable influence of temperature on the state of stress. Several examples illustrate the application of derived sensitivity operators and demonstrate their exactness


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110094
Author(s):  
Ibrahim Elnasri ◽  
Han Zhao

In this study, we numerically investigate the impact perforation of sandwich panels made of 0.8 mm 2024-T3 aluminum alloy skin sheets and graded polymeric hollow sphere cores with four different gradient profiles. A suitable numerical model was conducted using the LS-DYNA code, calibrated with an inverse perforation test, instrumented with a Hopkinson bar, and validated using experimental data from the literature. Moreover, the effects of quasi-static loading, landing rates, and boundary conditions on the perforation resistance of the studied graded core sandwich panels were discussed. The simulation results showed that the piercing force–displacement response of the graded core sandwich panels is affected by the core density gradient profiles. Besides, the energy absorption capability can be effectively enhanced by modifying the arrangement of the core layers with unclumping boundary conditions in the graded core sandwich panel, which is rather too hard to achieve with clumping boundary conditions.


2021 ◽  
Author(s):  
Mohammed Ahmed Al-Janabi ◽  
Omar F. Al-Fatlawi ◽  
Dhifaf J. Sadiq ◽  
Haider Abdulmuhsin Mahmood ◽  
Mustafa Alaulddin Al-Juboori

Abstract Artificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorithm to tackle the challenging task of optimally allocating the gas lift injection rate through numerical modeling and simulation studies to maximize the oil production of a Middle Eastern oil field with 20 production wells with limited amount of gas to be injected. The key objective of this study is to assess the performance of the wells of the field after applying gas lift as an artificial lift method and applying the genetic algorithm as an optimization algorithm while comparing the results of the network to the case of artificially lifted wells by utilizing ESP pumps to the network and to have a more accurate view on the practicability of applying the gas lift optimization technique. The comparison is based on different measures and sensitivity studies, reservoir pressure, and water cut sensitivity analysis are applied to allow the assessment of the performance of the wells in the network throughout the life of the field. To have a full and insight view an economic study and comparison was applied in this study to estimate the benefits of applying the gas lift method and the GA optimization technique while comparing the results to the case of the ESP pumps and the case of naturally flowing wells. The gas lift technique proved to have the ability to enhance the production of the oil field and the optimization process showed quite an enhancement in the task of maximizing the oil production rate while using the same amount of gas to be injected in the each well, the sensitivity analysis showed that the gas lift method is comparable to the other artificial lift method and it have an upper hand in handling the reservoir pressure reduction, and economically CAPEX of the gas lift were calculated to be able to assess the time to reach a profitable income by comparing the results of OPEX of gas lift the technique showed a profitable income higher than the cases of naturally flowing wells and the ESP pumps lifted wells. Additionally, the paper illustrated the genetic algorithm (GA) optimization model in a way that allowed it to be followed as a guide for the task of optimizing the gas injection rate for a network with a large number of wells and limited amount of gas to be injected.


2014 ◽  
Vol 10 (1) ◽  
pp. 111
Author(s):  
Rahman Erama ◽  
Retantyo Wardoyo

AbstrakModifikasi Algoritma Genetika pada penelitian ini dilakukan berdasarkan temuan-temuan para peneliti sebelumnya tentang kelemahan Algoritma Genetika. Temuan-temuan yang dimakasud terkait proses crossover sebagai salah satu tahapan terpenting dalam Algoritma Genetika dinilai tidak menjamin solusi yang lebih baik oleh beberapa peneliti. Berdasarkan temuan-temuan oleh beberapa peneliti sebelumnya, maka penelitian ini akan mencoba memodifikasi Algoritma Genetika dengan mengeliminasi proses crossover yang menjadi inti permasalahan dari beberapa peneliti tersebut. Eliminasi proses crossover ini diharapkan melahirkan algoritma yang lebih efektif sebagai alternative untuk penyelesaian permasalahan khususnya penjadwalan pelajaran sekolah.Tujuan dari penelitian ini adalah Memodifikasi Algoritma Genetika menjadi algoritma alternatif untuk menyelesaikan permasalahan penjadwalan sekolah, sehingga diharapkan terciptanya algoritma alternatif ini bisa menjadi tambahan referensi bagi para peneliti untuk menyelesaikan permasalahan penjadwalan lainnya.Algoritma hasil modifikasi yang mengeliminasi tahapan crossover pada algoritma genetika ini mampu memberikan performa 3,06% lebih baik dibandingkan algoritma genetika sederhana dalam menyelesaikan permasalahan penjadwalan sekolah. Kata kunci—algoritma genetika, penjadwalan sekolah, eliminasi crossover  AbstractModified Genetic Algorithm in this study was based on the findings of previous researchers about the weakness of Genetic Algorithms. crossover as one of the most important stages in the Genetic Algorithms considered not guarantee a better solution by several researchers. Based on the findings by previous researchers, this research will try to modify the genetic algorithm by eliminating crossover2 which is the core problem of several researchers. Elimination crossover is expected to create a more effective algorithm as an alternative to the settlement issue in particular scheduling school.This study is intended to modify the genetic algorithm into an algorithm that is more effective as an alternative to solve the problems of school scheduling. So expect the creation of this alternative algorithm could be an additional resource for researchers to solve other scheduling problems.Modified algorithm that eliminates the crossover phase of the genetic algorithm is able to provide 2,30% better performance than standard genetic algorithm in solving scheduling problems school. Keywords—Genetic Algorithm, timetabling school, eliminate crossover


Sign in / Sign up

Export Citation Format

Share Document