Static mechanical response of sandwich panels with bilinear core

2018 ◽  
Vol 22 (7) ◽  
pp. 2421-2444
Author(s):  
Guangtao Wei ◽  
Lijia Feng ◽  
Linzhi Wu

A new theoretical model based on the extended high order sandwich panel theory is established to predict the mechanical response of sandwich panels under static loads with the bilinear constitutive stress–strain relation in the core. The constitutive relations of normal stresses related to the longitudinal and vertical normal strains in the bilinear isotropic hardening core are first formulated. The influence of the in-plane rigidity on the elastoplastic response of sandwich structures is analyzed. An in-plane loaded sandwich structure with the bilinear core is first studied based on extended high order sandwich panel theory, and the effect of the bilinear ratio on the mechanical response is evaluated. The governing equations are derived from the principle of minimum potential energy, and a Ritz-based half-analytical method is applied to get the solutions. The plastic response is acquired by an iterative procedure along with the convergence criteria. The results reveal that the local effect can be captured when the axial rigidity of the core is considered. The bilinear characteristic of the core decreases the maximum normal stress with an increase of the average value. The equivalent plastic region extends with the increase of the bilinear ratio when the sandwich structure is loaded in plane. By comparison with open literatures and finite element results, the present theoretical model is proved to be effective and efficient.

2019 ◽  
Vol 21 (5) ◽  
pp. 1700-1725 ◽  
Author(s):  
Yeoshua Frostig ◽  
George Kardomateas

The thermal and the thermo-mechanical responses of a sandwich panel with a compliant core are investigated within the framework of the extended high-order approach where the core properties are temperature dependent or independent. Loads schemes include thermal field within temperature working range simultaneous with in-plane compressive loads applied to the core only and to the face sheets and core in the form of the uniform end—shortening of edge of panel. The mathematical formulations use the extended high-order sandwich panel theory approach that takes into account the in-plane rigidity of the core and uses the deformation patterns of the high-order sandwich panel theory. The linear and nonlinear field equations along with the appropriate boundary conditions are presented. A numerical study is conducted, and it investigates the thermal response with temperature independent and temperature dependent mechanical properties of the core as well as the thermo-mechanical response due to in-plane compressive loads. The results include displacements, stress resultants, and stress at critical locations along the panel as well as equilibria curves. They reveal that, in general, the panel with temperature independent properties response remains almost linear while with temperature dependent ones it takes a general nonlinear response. The addition of an external mechanical load changes the response from a linear/nonlinear one that may be allowable stress controlled to a case where loss of stability occurs.


Author(s):  
Seyed Ali Ahmadi ◽  
Mohammad Hadi Pashaei ◽  
Ramazan-Ali Jafari-Talookolaei

The current study aims to investigate the facesheet dynamic pulse buckling of simply supported, cylindrical composite sandwich panels using the Budiansky–Roth buckling criterion. The foam core has been modeled with isotropic elastic-perfectly plastic properties and various failure modes of the sandwich panel like facesheet fracture, foam shear fracture, and foam yield are investigated. The extended high-order sandwich panel core theory was used to model the compressibility of the core. To study the mechanical properties of the viscoelastic foam core, the Kelvin–Voigt linear viscoelastic model was applied. The transient responses and stress components obtained from the present method are compared with finite element solutions using commercial software ANSYS and those reported in the literature. Accordingly, reasonable agreement is observed. It was shown that the pulse local buckling strength of the panel increases with a decrease in the panel radius or an increase in the thickness of the panel, and facesheet fracture is considered more a likely failure mode of these sandwich panels.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110094
Author(s):  
Ibrahim Elnasri ◽  
Han Zhao

In this study, we numerically investigate the impact perforation of sandwich panels made of 0.8 mm 2024-T3 aluminum alloy skin sheets and graded polymeric hollow sphere cores with four different gradient profiles. A suitable numerical model was conducted using the LS-DYNA code, calibrated with an inverse perforation test, instrumented with a Hopkinson bar, and validated using experimental data from the literature. Moreover, the effects of quasi-static loading, landing rates, and boundary conditions on the perforation resistance of the studied graded core sandwich panels were discussed. The simulation results showed that the piercing force–displacement response of the graded core sandwich panels is affected by the core density gradient profiles. Besides, the energy absorption capability can be effectively enhanced by modifying the arrangement of the core layers with unclumping boundary conditions in the graded core sandwich panel, which is rather too hard to achieve with clumping boundary conditions.


1980 ◽  
Vol 47 (2) ◽  
pp. 383-388 ◽  
Author(s):  
K. Kemmochi ◽  
T. Akasaka ◽  
R. Hayashi ◽  
K. Ishiwata

In this paper, a modified theory based upon Reissner’s procedure for the shear-lag effect of the sandwich panel is presented, which includes the effects of the anisotropy of the faces and the shearing rigidity of the core. In order to verify this theory, bending experiments were performed with sandwich panels composed of a soft core, stiffeners, and orthotropic faces. It was found that the effective bending rigidity calculated from this theory was lower than that derived from the classical bending theory and that the theoretical strain distribution on the faces agreed well with the experimental results.


2021 ◽  
Vol 250 ◽  
pp. 02027
Author(s):  
Ibrahim Elnasri

In this study, we numerically and analytically investigate the impact perforation of sandwich panels made of 0.8 mm 2024-T3 aluminum alloy skin sheets and graded polymeric hollow sphere cores with four different gradient profiles. A suitable numerical model was conducted using the LS-DYNA code, calibrated with an inverse perforation test, instrumented with a Hopkinson bar, and validated using experimental data from the literature. Moreover, the effect of boundary conditions on the perforation resistance of the studied graded core sandwich panels was discussed. The simulation results showed that the piercing force– displacement response of the graded core sandwich panels is affected by the core density gradient profiles. Besides, the energy absorption capability can be effectively enhanced by modifying the arrangement of the core layers with un-clumping boundary conditions in the graded core sandwich panel, which is rather too hard to achieve with clumping boundary conditions. Finally, an analytical model, taken account only gradient in the quasi-static plateau stress, is developed to predict the top skin pic peak load of the graded sandwich panel.


Author(s):  
Tianyu Zhou ◽  
Pan Zhang ◽  
Yuansheng Cheng ◽  
Manxia Liu ◽  
Jun Liu

In this paper, the numerical model was developed by using the commercial code LS/DYNA to investigate the dynamic response of sandwich panels with three PVC foam core layers subjected to non-contact underwater explosion. The simulation results showed that the structural response of the sandwich panel could be divided into four sequential regimes: (1) interaction between the shock wave and structure, (2) compression phase of sandwich core, (3) collapse of cavitation bubbles and (4) overall bending and stretching of sandwich panel under its own inertia. Main attention of present study was placed at the blast resistance improvement by tailoring the core layer gradation under the condition of same weight expense and same blast load. Using the minimization of back face deflection as the criteria for evaluating the blast resistant of panel, the panels with core gradation of high/middle/low or middle/low/high (relative densities) from the front face to back face demonstrated the optimal resistance. Moreover, the comparative studies on the blast resistance of the functionally graded sandwich panels and equivalent ungraded ones were carried out. The optimum functionally graded sandwich panel outperformed the equivalent ungraded one for relatively small charge masses. The energy absorption characteristics as well as the core compression were also discussed. It is found that the core gradation has a negligible effect on the whole energy dissipation of panel, but would significantly affect the energy distribution among sandwich panel components and the compression value of core.


2000 ◽  
Author(s):  
Liviu Librescu

Abstract This paper deals with a comprehensive geometrically nonlinear theory of shallow sandwich shells that includes also the effect of the initial geometric imperfections. It is assumed that the face-sheets of the sandwich structure are built-up from anisotropic materials layers, whereas the core layer from an orthotropic material. As a result of its features the structural model can provide important information related to the load carrying capacity of sandwich structures in the pre- and postbuckling ranges. Moreover, by using the directionality properties of face-sheets materials, possibilities of enhancing the load carrying capacity of sandwich shells/plates are reached. Selected numerical illustrations emphasizing these features are presented and pertinent conclusions on the beneficial implications of anisotropy of face-sheets and core layer materials upon the load-carrying capacity of sandwich panels are emphasized. Under the present study, the sandwich structure consists of a thick core-layer bonded by the face-sheets that consist of composite anisotropic materials, symmetrically laminated with respect to the mid-surface of the core-layer. The initial geometric imperfection consisting of a stress free initial transversal deflection, will be also incorporated in the study. The loads under which the nonlinear response will be analyzed consist basically of uniaxial/biaxial compressive edge and lateral loads.


2018 ◽  
Vol 157 ◽  
pp. 06007
Author(s):  
Jolanta Pozorska

The paper presents the problem of static analysis of sandwich structures with a non-continuous soft core. In the numerical 3D FE models, the core is divided into separated parts. The contact between these parts has the form of unilateral constraints. The model also allows for local debonding of the facing and local imperfections of sandwich panel geometry. Particular attention is paid to the problem of local instability of the facing that is compressed during bending. The phenomenon of progressive damage and the influence of non-continuity of the core on the structural behavior of the sandwich panel is also discussed.


Author(s):  
Keramat M Fard ◽  
Mostafa Livani

Based on a new improved higher-order sandwich panel theory, the buckling analysis of a truncated conical composite sandwich panel with simply supported and fully clamped boundary conditions was performed for the first time. This panel was subjected to axial compression and external pressures. The governing equations were derived by using the principle of minimum potential energy. The first-order shear deformation theory was used for the composite face sheets, and for the core, a polynomial description of the displacement fields was assumed. Geometry was used for the consideration of different radii curvatures of the face sheets and the core was unique. The effects of types of boundary conditions, conical angles, length to smaller radius of core ratio, core to panel thickness ratio, and smaller radius of core to panel thickness ratio on the buckling response of truncated conical composite sandwich panels were also studied. The results were validated by the results published in the literature and the presented FE results were obtained by ABAQUS software.


2013 ◽  
Vol 694-697 ◽  
pp. 216-220 ◽  
Author(s):  
Lin Chen ◽  
Xiao Zhong Xie ◽  
Zhuo Li ◽  
Ye Qing Jin

Sandwich panels with a V-type corrugated core are developed to investigate their crushing performance under lateral load based on the numerical method. The validity and feasibility of the calculation method is qualified by comparing numerical results with experiment results. Based on that, finite element software is applied to analyze the effects of structural parameters on the crushing performance of sandwich structure. Then inspecific energy increases as the core thickness and inclination angle are increased, but it will induce as the core height is raised. Additionally, the average crushing strength is increased with the increasing thickness, but it will decrease as the core height and inclination angle are raised. The results of this research may help the practical design and optimization of sandwich panel with corrugated core.


Sign in / Sign up

Export Citation Format

Share Document