Near-Infrared Emissions of Sm3+ in Li2O-K2O-BaO-PbO-Bi2O3-Ga2O3 Glasses

2012 ◽  
Vol 476-478 ◽  
pp. 1121-1124 ◽  
Author(s):  
Xiang Ling Zhang ◽  
Ming Liu ◽  
Xin Zhao ◽  
Hai Lin

μNear-infrared (NIR) emissions have been observed in Sm3+doped low phonon energy heavy-metal-gallate glasses. The full-widths at half-maximum (FWHMs) of three fluorescence bands peaking at 960, 1038, and 1185 nm were derived to be 31, 36, and 42 nm, respectively, and the spontaneous transition probabilities were calculated to be 66, 16, and 6 s-1. Maximum stimulated emission cross-sections ( σem) for NIR transition emissions were obtained to be 4.22´10-22, 1.37´10-22, and 0.71´10-22cm2, respectively. Investigations on multi-channel NIR transition emissions of Sm3+, especially on the ~1.19 μm emission, which lies in the low-loss wavelength region of transmission window, are beneficial for potential applications in infrared optoelectronic devices.

MRS Bulletin ◽  
1999 ◽  
Vol 24 (9) ◽  
pp. 21-26 ◽  
Author(s):  
R. Moncorgé ◽  
L.D. Merkle ◽  
B. Zandi

An issue on novel applications of materials doped with rare-earth (RE) ions can scarcely fail to address lasers, but it need not address all RE-based lasers. Some Nd3+ -doped lasers, particularly Nd:YAG (Y3Al5O12, yttrium aluminum garnet), emitting light with a wavelength of 1064 nm, are very well-established commercial products—by no means novelties.1 Some other near-infrared (NIR) lasers, based on Er3+ or Tm3+, are also available commercially. That wavelength region is relatively easy for RE laser ions, involving energy spacings between initial and final energy levels small enough to give large stimulated emission cross sections for useful, long upper-state life-times, yet large enough to minimize thermal deexcitation mechanisms. On the other hand, RE-doped lasers for ultraviolet (UV) and visible wavelengths are quite novel, since efficient laser operation is more difficult to achieve in these spectral ranges. Intriguing progress on such devices has been made in recent years, driven by several important applications.In this article, we begin by noting some of the alternative ways to obtain laser light at these wavelengths, including their advantages and drawbacks. We then discuss basic properties of RE-doped laser materials and how these can be advantageous. We then review a few of the most important and recent RE-doped laser materials and techniques for obtaining UV and visible output.


2006 ◽  
Vol 3 (2) ◽  
pp. 312-314 ◽  
Author(s):  
John R. H. Xie ◽  
Chiu Fung Cheung ◽  
Jijun Zhao

Gao, Bulusu and Zeng have recently reported a new series of isoelectronic, sub-nanometer gold-caged metal systems M@Au14 which have large energy gaps than icosahedral W@Au12 and Au32 and tetrahedral Au20. In this communication, we propose a "tuning" scheme, substitutional-doping, to achieve the tunable optical excitation and emission of M@Au14 over a broad wavelength region. For example, the optical absorption gaps of isoelectronic M@Au14 could be tuned from the near infrared to green by substituting the metal M with group IIIB, IVB, and VB constituents in the periodic table. Our results provide basic guidelines for further experimental studies on the spectral properties of M@Au14 as well as for the development of M@Au14-based tunable optoelectronic devices.


2008 ◽  
Vol 177 (1) ◽  
pp. 388-407 ◽  
Author(s):  
Alejandro Aguilar ◽  
Joseph M. Ajello ◽  
Rao S. Mangina ◽  
Geoffrey K. James ◽  
Hervé Abgrall ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
pp. 9-16
Author(s):  
V L Usharani ◽  
B Eraiah

Different concentration of (0.1, 0.2, 0.3, 0.4, 0.5, 1.0 & 1.5) mol% of europium doped lead borate lithium glasses were prepared by melt quenching method. The properties of thermal, photoluminescence & structural were analyzed using DTA, FTIR and emission spectra. Emission spectra was used to evaluate the Judd-Ofelt (JO) parameters. Radiative parameters like stimulated emission cross-sections (σe), effective band width (∆λeff), transition probabilities (A), optical gain bandwidths (σe x ∆λeff), radiative lifetime (τrad) and optical gain (σe x τrad) values were evaluated for the transition 5D0→7Fj (j=1, 2, 3 and 4) of Eu3+ ions. The outcome of transition 5D0→7F4 at its highest value of branching ratios and stimulated emission cross-section are evaluated with the literature. Hence we can could the prepared host glass doped with Eu3+ ions are good fibre amplifiers and it can be used as a red laser.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Xu Qin ◽  
Wangyu Sun ◽  
Ziheng Zhou ◽  
Pengyu Fu ◽  
Hao Li ◽  
...  

Abstract Plasmonic phenomena on the surface between metal and dielectric have received extensive attention, and have boosted a series of exciting techniques. Plasmonics describes the interaction between light and electronics and shows great potential in nanophotonics, optoelectronic devices, quantum physics, and surface-enhanced spectroscopy, etc. However, plasmonic phenomena are always suffering from the inherent loss issue of plasmonic materials at optical frequency, which has restricted further applications of plasmonics. In this review, we focus on the technique of waveguide effective plasmonics, which is a feasible low-loss realization of plasmonic metamaterials in lower frequency based on the structural dispersion. This review provides the underlying physics of the waveguide effective plasmonics and its applications varying from classical plasmonic concepts to novel effective plasmonic devices. Finally, we make a brief discussion on the direction of future researches and a prospect of the potential applications.


2016 ◽  
Vol 26 (1) ◽  
pp. 25
Author(s):  
Ngo Van Tam ◽  
Vu Phi Tuyen ◽  
Phan Van Do

The excitation, emission spectra and and lifetime of Eu-doped borotellurite glasses (BTe) have been investigated. The sideband phonon energy and electron-phonon coupling strength (g) have been found. The intensity parameters Ωλ were calculated from the emission spectrum. These parameters were used to predict radiative properties such as transition probabilities (AR), calculated branching ratios (βR) and stimulated emission cross-sections (σλp) for 5D0→7HJHFJ transitions.


1996 ◽  
Vol 35 (24) ◽  
pp. 4812 ◽  
Author(s):  
Sury Chudamani ◽  
James D. Spinhirne ◽  
Antony D. Clarke

2018 ◽  
Vol 63 (8) ◽  
pp. 721 ◽  
Author(s):  
R. Rajaramakrishna ◽  
Y. Ruangtawee ◽  
J. Kaewkhao

Room temperature visible and near infrared optical absorption and emission spectra of Sm3+-doped molybdenum gadolinium borate (MGB) glasses with molar composition 25MoO3-20Gd2O3–(55 − x)B2O3−xSm2O3 (x = 0.05, 0.1, 0.5, 1.0, 2.0 mol.%) have been analyzed. The experimental oscillator strengths of absorption bands have been used to determine the Judd–Ofelt (J–O) parameters. Fluorescence spectra were recorded by exciting the samples at 402 nm. Using the J–O parameters and luminescence data, the radiative transition probabilities (AR), branching ratios (BR), and stimulated emission cross-sections oe) are obtained. The decay curves of the 4G5/2 - 6H7/2 transition exhibit a non-exponential curve fit for all concen-trations. The concentration quenching has been attributed to the energy transfer through the cross-relaxation between Sm3+ ions. 4G5/2 level and its relative quantum efficiencies are measured. Intense reddish-orange emission corresponding to the 4G5/2−6H7/2 transition has been observed in these glasses at the 487-nm excitation, From the values of the radiative parameters, it is concluded that the 1.0-mol% Sm3+-doped MGB glass may be used as a laser active medium with the emission wavelength at 599 nm. The analysis of the non-exponential behavior of decay curves through the Inokuti–Hirayama model indicates that the energy transfer between Sm3+ ions is of dipole–dipole type. The quantum efficiency for the 4G5/2 level of MGBSm10 glass is found to be 67%. The co-related color temperature obtained from CIE (Commission International de L’Eclairage) for these glass samples is ∼1620 K for the indicated orange emission at the 402-nm excitation.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 431
Author(s):  
Giorgio Turri ◽  
Scott Webster ◽  
Michael Bass ◽  
Alessandra Toncelli

Spectroscopic properties of neodymium-doped yttrium lithium fluoride were measured at different temperatures from 35 K to 350 K in specimens with 1 at% Nd3+ concentration. The absorption spectrum was measured at room temperature from 400 to 900 nm. The decay dynamics of the 4F3/2 multiplet was investigated by measuring the fluorescence lifetime as a function of the sample temperature, and the radiative decay time was derived by extrapolation to 0 K. The stimulated-emission cross-sections of the transitions from the 4F3/2 to the 4I9/2, 4I11/2, and 4I13/2 levels were obtained from the fluorescence spectrum measured at different temperatures, using the Aull–Jenssen technique. The results show consistency with most results previously published at room temperature, extending them over a broader range of temperatures. A semi-empirical formula for the magnitude of the stimulated-emission cross-section as a function of temperature in the 250 K to 350 K temperature range, is presented for the most intense transitions to the 4I11/2 and 4I13/2 levels.


Sign in / Sign up

Export Citation Format

Share Document