scholarly journals Optical properties of Eu3+ ions in boro-tellurite glass

2016 ◽  
Vol 26 (1) ◽  
pp. 25
Author(s):  
Ngo Van Tam ◽  
Vu Phi Tuyen ◽  
Phan Van Do

The excitation, emission spectra and and lifetime of Eu-doped borotellurite glasses (BTe) have been investigated. The sideband phonon energy and electron-phonon coupling strength (g) have been found. The intensity parameters Ωλ were calculated from the emission spectrum. These parameters were used to predict radiative properties such as transition probabilities (AR), calculated branching ratios (βR) and stimulated emission cross-sections (σλp) for 5D0→7HJHFJ transitions.

2019 ◽  
Vol 33 (17) ◽  
pp. 1950179
Author(s):  
Tran Thi Hong ◽  
Phan Tien Dung ◽  
Vu Xuan Quang

The optical properties of Eu[Formula: see text] ions in tellurite glass ceramics with the chemical composition 50TeO2–29B2O3–10ZnO–10Na2O–1Eu2O3-based precursor glasses were presented. These precursor glasses have been prepared by melt quenching method in air, followed by thermal annealing at 550[Formula: see text]C for 12 h, 24 h and 36 h. After thermal annealing process, the micro–crystals appeared in host tellurite glasses. Judd–Ofelt (JO) parameters were calculated from the photoluminescence (PL) spectral measurements. The [Formula: see text], [Formula: see text] and [Formula: see text] parameters have been used to estimate the radiative properties of Eu[Formula: see text] ions in tellurite glass ceramics such as transition probabilities, branching ratio, radiative lifetimes and stimulated emission cross-section. The results of tellurite glass ceramic have been discussed and compared with the similar studies.


2013 ◽  
Vol 22 ◽  
pp. 298-304
Author(s):  
BEENA BHATIA ◽  
VISHAL PARIHAR

Glasses of the system: xB2O3-10Bi2O3-30Li2O-xPr6O11 where x =1, 1.5 and 2 were prepared by melt quenching technique. Optical absorption and emission spectra have been recorded. The intensities of f-f transition are calculated in term of Judd-Ofelt (JO) intensity parameters Ωλ (λ = 2, 4 and 6). Using the fluorescence data and these Ωλ parameters, various radiative properties like transition probability (Arad), branching ratio (βR), radiative lifetime (τR), and stimulated emission cross section (σp), of various emission lines have been evaluated. The branching ratio for 3P0→3H4 transition is 56% and the predicted spontaneous radiative transition probability rates are fairly high 16411 s−1. This is beneficial for lasing emission.


2020 ◽  
Vol 9 (1) ◽  
pp. 9-16
Author(s):  
V L Usharani ◽  
B Eraiah

Different concentration of (0.1, 0.2, 0.3, 0.4, 0.5, 1.0 & 1.5) mol% of europium doped lead borate lithium glasses were prepared by melt quenching method. The properties of thermal, photoluminescence & structural were analyzed using DTA, FTIR and emission spectra. Emission spectra was used to evaluate the Judd-Ofelt (JO) parameters. Radiative parameters like stimulated emission cross-sections (σe), effective band width (∆λeff), transition probabilities (A), optical gain bandwidths (σe x ∆λeff), radiative lifetime (τrad) and optical gain (σe x τrad) values were evaluated for the transition 5D0→7Fj (j=1, 2, 3 and 4) of Eu3+ ions. The outcome of transition 5D0→7F4 at its highest value of branching ratios and stimulated emission cross-section are evaluated with the literature. Hence we can could the prepared host glass doped with Eu3+ ions are good fibre amplifiers and it can be used as a red laser.


2012 ◽  
Vol 585 ◽  
pp. 279-283 ◽  
Author(s):  
Sunil Bhardwaj ◽  
Rajni Shukla ◽  
Sujata Sanghi ◽  
Ashish Agarwal ◽  
Inder Pal

Glasses having compositions 20B2O3.(79.5-x)Bi2O3.xSiO2(10 ≤ x ≤ 40) doped with 0.5 mol% of Sm3+ions were prepared by melt quench technique. The amorphous nature of the glasses was confirmed by X-ray diffraction studies. The spectroscopic properties of Sm3+ions in bismuth borosilicate glasses as a function of bismuth oxide were investigated using optical absorption and fluorescence spectra. The Judd-Ofelt theory has been employed to calculate transitions probability from the data of absorption cross-section of several f-f transitions. The intensity parameters Ω2is related to the symmetry of glass hosts, where as the parameter Ω6is inversely proportional to the rare earth oxygen (RE-O) covalency. The variation of Ω4with Bi2O3content has been attributed to rigidity of the samples. Using the Judd Ofelt intensity parameters the other radiative properties like radiative transition probability, radiative life time, branching ratio and the stimulated emission cross-sections of prepared BBSS glasses have been calculated. A bright fluorescent orange emission at 600 nm (4G5/2→6H7/2) of Sm3+ion has been investigated as a function of Bi2O3in host glass. The radiative transition probabilities of Sm3+ions are large in bismuth borosilicate glasses, suggesting the suitability of these glasses as potential candidate for laser application.


2014 ◽  
Vol 895 ◽  
pp. 323-333 ◽  
Author(s):  
Sharudin Omar Baki ◽  
L.S. Tan ◽  
C.S. Kan ◽  
Halimah Mohamed Kamari ◽  
A.S.M. Noor ◽  
...  

Multicomposition of Er3+-Yb3+codoped tellurite oxide, TeO2-ZnO-PbO-TiO2-Na2O glass has been investigated. Detailed spectroscopic study of the Judd-Ofelt analysis has been performed from the measured absorption spectrum in order to obtain the intensity parameters Ωt(t=2, 4, 6). The calculated Ωtvalues were then utilized in the determination of transition probabilities, radiative lifetimes and branching ratios of the Er3+transitions between theJ(upper)-J(lower) manifolds. Both visible upconversion and near-infrared spectra were characterized under the 980 nm laser diode excitation at room temperature.


Author(s):  
S. L. Meena

Abstract: Zinc lithium lead calcium borophosphate glasses containing Er3+ in (40- x):P2O5:10ZnO:10Li2O:10PbO:10CaO:20B2O3:xEr2O3 (where x=1, 1.5,2 mol %) have been prepared by melt-quenching method. The amorphous nature of the glasses was confirmed by x-ray diffraction studies. Optical absorption, Excitation, fluorescence and Transmittance spectra were recorded at room temperature for all glass samples. Judd-Ofelt intensity parameters Ωλ (λ=2, 4, 6) are evaluated from the intensities of various absorption bands of optical absorption spectra. Using these intensity parameters various radiative properties like spontaneous emission probability, branching ratio, radiative life time and stimulated emission cross–section of various emission lines have been evaluated. Keywords: ZLLCBP Glasses, Optical Properties, Judd-OfeltTheory, Transmittance Properties.


2014 ◽  
Vol 875-877 ◽  
pp. 23-27
Author(s):  
Ru Zhen Xing ◽  
Bing Chu Mei ◽  
Jing Hong Song ◽  
Xiao Nv Li

In this paper, we evaluated the spectra parameters of Er3+.The absorption spectra of Er3+:CaF2transparent ceramic was measured at room temperature (RT). Based on the Judd–Ofelt theory, the intensity parameters were Ω2= 5.02×10−20cm2, Ω4= 3.40×10−20cm2and Ω6= 0.38×10−20cm2, and then the values of the radiative transition probabilities, radiative lifetimes and integrated emission cross-sections of excited states were calculated. Full width at half maximum (FWHM) of the fluorescence spectra for4I13/2→4I15/2transition was investigated, being 17nm. The decay time was found to be 24.3ms, which is longer than the theoretically calculated value indicating a radiation trapping effect in this work.


2014 ◽  
Vol 24 (3S1) ◽  
pp. 136-142 ◽  
Author(s):  
Tran Thi Hong ◽  
Phan Tien Dung ◽  
Vu Xuan Quang

In this work, the structural characteristic and photoluminescence properties of Eu\(^{3 + }\) doped B\(_{2}\)O\(_{3}\)-TeO\(_{2}\) -ZnO-Na\(_{2}\)O glasses were investigated. These glasses were prepared by a melting method in air, combined with thermal annealing at 350\(^{\circ}\)C, 450\(^{\circ}\)C and 550\(^{\circ}\)C for different duration times. The structural analysis results of these glasses revealed the formation of micro-crystals in the annealed host glass. The photoluminescence spectra of Eu\(^{3 + }\) doped in these samples were observed. The local vibration mode around Eu\(^{3 + }\) ions was investigated by the phonon side-band (PSB) associated with \(^{7}\!F_{0}-^{5}D_{2}\) transition of Eu\(^{3+}\). Judd-Ofelt parameters were then evaluated based on photoluminescence spectra and the luminescence intensity ratios of \(^{5}D_{0} \to ^{7}\!F_{J}\) (\(J=2, 4\) and 6) to \(^{5}D_{0} \to ^{7}\!F_{1}\) transition were predicted. The obtained results were then used to calculate \(\Omega _{2},\;\Omega _{4},\; \Omega _{6} \) parameters based on Judd-Ofelt theory. These \(\Omega _{2}\), \(\Omega _{4}\), \(\Omega _{6}\) parameters allow to derive radiative properties of Eu\(^{3 + }\) ions in glass material such as transition probabilities, radiative lifetimes and peak stimulated emission cross-section for the \(^{5}D_{0} \to ^{7}\!F_{J}\) transitions.


Author(s):  
Phan Văn Độ

Borotellurite glasses doped with Sm3+ ions were prepared by a melt–quenching technique. The studies on optical characterization of Sm3+ ions have been carried out through absorption, emission and decay spectra. Judd-Ofelt (JO) intensity analysis has been presented and JO parameters were calculated for Sm3+ ions in borotellurite glasses. Radiative properties such as transition probabilities, branching ratios, radiative lifetime of 4G5/2 level and quantum efficiency were estimated by using JO parameters.


2015 ◽  
Vol 29 (32) ◽  
pp. 1550235 ◽  
Author(s):  
Ho Van Tuyen ◽  
Nguyen Manh Son ◽  
Vu Xuan Quang

In this study, the [Formula: see text] phosphors were synthesized using combustion process and the annealing treatment. Structural behaviors of the prepared phosphor were explored by using X-ray diffraction (XRD), Raman spectra analysis and optical characteristics were studied by excitation and photoluminescence spectra. The phonon sideband (PSB) spectrum associated with [Formula: see text]–[Formula: see text] excitation transition was used to estimate the electron–phonon coupling constant (g) and local structure of the [Formula: see text] ions with its surrounding ligands. Judd–Ofelt (J–O) intensity parameters obtained from emission spectra have been used to evaluate the local site symmetry around [Formula: see text] ions.


Sign in / Sign up

Export Citation Format

Share Document