Wheel Loader Working Device Optimization Design Based on the Sensitivity Analysis

2012 ◽  
Vol 479-481 ◽  
pp. 1745-1749
Author(s):  
Xing Li ◽  
Ya Zhou Chen

As designing the loader working device related to multi-variables, multi-objective and it is a non-linear constrained complex optimization problem essentially so using traditional optimization method to design the loader working device is low efficiency. A new method is proposed which combines the sensitivity analysis with the genetic algorithms to reduce the design variables and to improve the optimization efficiency. The optimization mathematical model is established. The key design variables which have greater impact on the loader digging force can be obtained by the sensitivity analysis and then input into genetic algorithms to conduct an optimization. By using this method the result showed that the loader digging force can be increased by 5.9 percent on the premise of meeting the overall performance requirements of the loader.

2012 ◽  
Vol 490-495 ◽  
pp. 3027-3031
Author(s):  
Xiao Ming Wu ◽  
Gui Xiang Xiao ◽  
Rong Chen

The optimization design process of working device of wheel loader is a multipurpose and multivariable. In this paper, the virtual prototype model of working device is established and detailed sensitivity analysis had taken for various purposes to the design variables. Then based on the sensitivity results, three schemes of design variables were presented and through iterative optimization with ADAMS, the lifting stability and other performances of wheel loader are improvement


2013 ◽  
Vol 655-657 ◽  
pp. 435-444
Author(s):  
Dong Xia Niu ◽  
Xian Yi Meng ◽  
Ai Hua Zhu

In the case of multiple loading conditions, a moving blade adjustable axial flow fan structure parameters are optimized by ANSYS. It is to achieve greater efficiency and less noise for the optimization goal. For different conditions, establish efficiency, noise comprehensive objective function using weighted coefficient method. Select impeller diameter, the wheel hub ratio, leaf number, lift coefficient, speed as design variables, Choose blade installation Angle, the wheel hub place dynamic load coefficient, cascade consistency, allowable safety coefficient as optimization of the state variables. Design variables contain continuous variables and discrete variable. Through the optimization method, we get the optimal structure parameters finally. And at the same time get the corresponding optimal blade installation Angle,under different working conditions.


2020 ◽  
pp. 1-12
Author(s):  
Qiang Zheng ◽  
Hai-Chao Chang ◽  
Zu-Yuan Liu ◽  
Bai-Wei Feng

Hull optimization design based on computational fluid dynamics (CFD) is a highly computationally intensive complex engineering problem. Because of reasons such as many variables, spatially complex design performance, and huge computational workload, hull optimization efficiency is low. To improve the efficiency of hull optimization, a dynamic space reduction method based on a partial correlation analysis is proposed in this study. The proposed method dynamically uses hull-form optimization data to analyze and reduce the range of values for relevant design variables and, thus, considerably improves the optimization efficiency. This method is used to optimize the wave-making resistance of an S60 hull, and its feasibility is verified through comparison. 1. Introduction In recent years, to promote the rapid development of green ships, hull optimization methods based on computational fluid dynamics (CFD) have been widely used by many researchers, such as Tahara et al. (2011), Peri and Diez (2013), Kim and Yang (2010), Yang and Huang (2016), Chang et al. (2012), and Feng et al. (2009). However, hull optimization design is a typically complex engineering problem. It requires many numerical simulation calculations, and the design performance space is complex, which has resulted in low optimization efficiency and difficulty in obtaining a global optimal solution. Commonly used solutions include 1) efficient optimization algorithms, 2) approximate model techniques, and 3) high-performance cluster computers. However, these methods still cannot satisfy the engineering application requirements in terms of efficiency and quality of the solution. To solve the problem of low optimization efficiency and difficulty in obtaining an optimal solution in engineering optimization problems, many scholars have conducted research on design space reduction technology. Reungsinkonkarn and Apirukvorapinit (2014) applied the search space reduction (SSR) algorithm to the particle swarm optimization (PSO) algorithm, eliminating areas in which optimal solutions may not be found through SSR to improve the optimization efficiency of the algorithm. Chen et al. (2015) and Diez et al. (2014, 2015) used the Karhunen–Loeve expansion to evaluate the hull, eliminating the less influential factors to achieve space reduction modeling with fewer design variables. Further extensions to nonlinear dimensionality reduction methods can be found in D'Agostino et al. (2017) and Serani et al. (2019). Jeong et al. (2005) applied space reduction techniques to the aerodynamic shape optimization of the vane wheel, using the rough set theory and decision trees to extract aerofoil design rules to improve each target. Gao et al. (2009) and Wang et al. (2014) solved the problem of low optimization efficiency in the aerodynamic shape optimization design of an aircraft, by using analysis results of partial correlation, which reduced the range of values of relevant design variables to reconstruct the optimized design space. Li et al. (2013) divided the design space into several smaller cluster spaces using the clustering method, which is a global optimization method based on an approximation model, thus achieving design space reduction. Chu (2010) combined the rough set theory and the clustering method for application to the concept design stage of bulk carriers, thus realizing the exploration and reduction of design space. Feng et al. (2015) applied the rough set theory and the sequential space reduction method to the resistance optimization of typical ship hulls to achieve the reduction of design space. Wu et al. (2016) used partial correlation analysis to reduce the design space of variables of a KCS container ship to improve optimization efficiency. Most of the above space reduction methods need to sample and calculate the original design space in the early stage of optimization and then obtain the reduced design space through data mining. This process increases the computational cost of sampling, making it difficult to control optimization efficiency.


2014 ◽  
Vol 721 ◽  
pp. 464-467
Author(s):  
Tao Fu ◽  
Qin Zhong Gong ◽  
Da Zhen Wang

In view of robustness of objective function and constraints in robust design, the method of maximum variation analysis is adopted to improve the robust design. In this method, firstly, we analyses the effect of uncertain factors in design variables and design parameters on the objective function and constraints, then calculate maximum variations of objective function and constraints. A two-level optimum mathematical model is constructed by adding the maximum variations to the original constraints. Different solving methods are used to solve the model to study the influence to robustness. As a demonstration, we apply our robust optimization method to an engineering example, the design of a machine tool spindle. The results show that, compared with other methods, this method of HPSO(hybrid particle swarm optimization) algorithm is superior on solving efficiency and solving results, and the constraint robustness and the objective robustness completely satisfy the requirement, revealing that excellent solving method can improve robustness.


2013 ◽  
Vol 816-817 ◽  
pp. 1154-1157
Author(s):  
Xu Yin ◽  
Ai Min Ji

To solve problems that exist in optimal design such as falling into local optimal solution easily and low efficiency in collaborative optimization, a new mix strategy optimization method combined design of experiments (DOE) with gradient optimization (GO) was proposed. In order to reduce the effect on the result of optimization made by the designers decision, DOE for preliminary analysis of the function model was used, and the optimal values obtained in DOE stage was taken as the initial values of design variables in GO stage in the new optimization method. The reducer MDO problem was taken as a example to confirm the global degree, efficiency, and accuracy of the method. The results show the optimization method could not only avoid falling into local solution, but also have an obvious superiority in treating the complex collaborative optimization problems.


2012 ◽  
Vol 457-458 ◽  
pp. 60-64 ◽  
Author(s):  
Hua Long Xie ◽  
Hui Min Guo ◽  
Qing Bao Wang ◽  
Yong Xian Liu

The optimization of spindle has important significance. The optimization method based on ANSYS is introduced and spindle mathematical mode of HTC3250µn NC machine tool is given. By scanning of design variables, the main optimized design variables are determined. The single objective and multi-objective optimizations are done. In the end, the main size comparison of spindle before and after optimization is given.


2012 ◽  
Vol 217-219 ◽  
pp. 179-183
Author(s):  
Wen Guo Zhu ◽  
Zhi Jun Meng ◽  
Jun Huang ◽  
Wei He

An effective optimization method is developed for laminated composite structures using two-level optimization strategy based on Kriging model and genetic algorithm (GA). Firstly, the design of experiment (DOE) technique is used to create sample points and MSC.Nastran is employed to obtain the response (minimum weight subjected to bulking and strength constraints) of each sample point. Based on sample points and the corresponding responses, the Kriging model is formulated. Secondly, GA is performed to obtain the best thickness by optimizing the Kriging model as objective function. Then, the best stacking sequence is obtained basing on lamination parameters using GA. This paper takes a Z shape composite stiffened plate as example to verify the feasibility of the method above. The results illustrate that it can significantly save computational costs and can greatly improve the optimization efficiency.


2011 ◽  
Vol 415-417 ◽  
pp. 460-463
Author(s):  
Li Liu ◽  
Hong Xia Liu

In the design of wrapping hoist, the roller strength is always a larger problem. In this paper, diameter, wall thickness and side plate thickness of the roller were selected as design variables, and volume of the roller acts as object function. Through analyzing its inner stresses, the mechanical model and mathematical model were set up. Adopting the optimization method of covering complex and VB programming software, an application software of a hoist roller optimization design was got. An example is used to verify correctness and practicability of the software. This optimization design method has practical significance on reducing the weight and material of a hoist roller.


Author(s):  
Yu Yang ◽  
Zhigang Wang ◽  
Binwen Wang ◽  
Shuaishuai Lyu

Wing's morphing leading edge, drooping in a seamless way, has significant potential for noise abatement and drag reduction. Innovative design methods for compliant skin and internal actuating mechanism, respectively, are proposed and validated through a mockup in this paper. For the skin, a collaborative optimization method is presented, which takes all design variables, continuous and discrete, into account simultaneously. Moreover, to overcome the drawback of conventional algorithm, which is insufficient for deformation control in critical regime, weight penalty is imposed on present objective function. On the other hand, an internal kinematic actuating mechanism is designed from an improved concept, of which positions of level-rod hinges are optimized in a larger zone to fit the deflection requirement. The test of mockup validates the above methods, and excellent morphing quality of the compliant skin proves the advancement of the collaborative optimization method. However, the design method of internal actuating mechanism needs further improvement, and the error induced deteriorates the final morphing quality of the mockup.


2011 ◽  
Vol 110-116 ◽  
pp. 4276-4283
Author(s):  
Atthaphon Ariyarit ◽  
Rung Kittipichai

This paper deals with the new method to design the optimum design for hospital bed, which can separate the left and or right leg for patient‘s leg splint. GAs as an optimization method was selected to search the minimum mass of bed structure whilst fulfilling some structure constraints such as stress, displacement and buckling. The GAs and FE code were developed to analyze the structure in MATLAB. This paper showed the success in searching the minimum mass whilst the stress and displacement were accepted. The optimum design for the hospital bed was 49.25 kg.


Sign in / Sign up

Export Citation Format

Share Document