The Application Research of Single-Molecule Magnets and Molecular Spin Electronics Materials

2012 ◽  
Vol 485 ◽  
pp. 522-525
Author(s):  
Hai Mei Xiao ◽  
Li Chun Shi

In the basic and applied research, the electronics and spin degrees of freedom is a very promising field of research and development over the past decade, spintronics from fundamental physics to technical devices already have a great deal of progress. This study made an overview of the synthesis, structure and properties of single molecular magnets and their applications in molecular spin combined with the latest research on this study sphere. Single molecular magnets are made of inner magnetic nuclei and peripheral organic molecule lamella, which can improve physical and chemical properties by means of adorn radical of organic ligand and exchange internal magnetic ions. And this paper also analyzes the molecular spin of the electron spin and charge electronic devices at the molecular level.

Author(s):  
Theocharis C Stamatatos ◽  
George Christou

Mixed-valent Mn/O dinuclear and polynuclear molecular compounds containing Mn III are almost without exception trapped valence. Large differences between the strengths of the exchange interactions within Mn II Mn III , Mn III Mn III and Mn III Mn IV pairs lead to situations where Mn III Mn IV interactions, the strongest of the three mentioned and antiferromagnetic in nature, dominate the intramolecular spin alignments in trinuclear and higher nuclearity mixed-valent complexes and often result in molecules that have large, and sometimes abnormally large, values of molecular spin ( S ). When coupled to a large molecular magnetoanisotropy of the easy-axis-type (negative zero-field splitting parameter, D ), also primarily resulting from individual Jahn–Teller distorted Mn III centres, such molecules will function as single-molecule magnets (molecular nanomagnets). Dissection of the structures and exchange interactions within a variety of mixed-valent Mn x cluster molecules with metal nuclearities of Mn 4 , Mn 12 and Mn 25 allows a ready rationalization of the observed S , D and overall magnetic properties in terms of competing antiferromagnetic exchange interactions within triangular subunits, resulting spin alignments and relative orientation of Mn III JT axes. Such an understanding has provided a stepping stone to the identification of a ‘magnetically soft’ Mn 25 cluster whose groundstate spin S value can be significantly altered by relatively minor structural perturbations. Such ‘spin tweaking’ has allowed this cluster to be obtained in three different forms with three different groundstate S values.


2009 ◽  
Vol 62 (9) ◽  
pp. 1108 ◽  
Author(s):  
Ross Inglis ◽  
Giannis S. Papaefstathiou ◽  
Wolfgang Wernsdorfer ◽  
Euan K. Brechin

The complexes [MnIII3O(Et-sao)3(O2CPh(Cl)2)(MeOH)3(H2O)] (1), [MnIII3O(Et-sao)3(ClO4)(MeOH)3] (2), [MnIII3O(Et-sao)3(O2Ph(CF3)2)(EtOH)(H2O)3] (3), and [MnIII3O(Ph-sao)3(O2C-anthra)(MeOH)4]·Ph-saoH2 (4·Ph-saoH2) display dominant ferromagnetic exchange interactions leading to molecules with S = 6 ground states. The molecules are single molecule magnets (SMM) displaying large effective energy barriers for magnetization reversal. In each case their crystal structures reveal multiple intermolecular H-bonding interactions. Single crystal hysteresis loop measurements demonstrate that these interactions are strong enough to cause a clear field bias, but too weak to transform the spin networks into classical antiferromagnets. These three-dimensional networks of exchange coupled SMMs demonstrate that quantum tunnelling magnetization can be controlled using exchange interactions, suggesting supramolecular chemistry can be exploited to modulate the quantum physics of molecular magnets.


2016 ◽  
Vol 14 (2) ◽  
pp. 221 ◽  
Author(s):  
Paolo Ruggero Errante ◽  
Pâmela Carolina Cruz Ebbing ◽  
Francisco Sandro Menezes Rodrigues ◽  
Renato Ribeiro Nogueira Ferraz ◽  
Neusa Pereira Da Silva

Introduction: flow cytometry is a technique that employs an optical-electronic detection apparatus to analyze the physical and chemical properties of microscopic particles suspend in a liquid medium. Objective: to review the literature in search of the main studies that used flow cytometry as the main methodology. Method: Articles were selected according to their impact factor in the Journal of Citation Reports. Literature review: a light beam is direct to a continuous flow of suspended particles marked with fluorescent substances. The light is scattered differently from the beam by the particles and is captured by sensors in line and perpendicular to the light beam. These microscopic particles are conjugated with fluorescent substances that, once excited, emit light of lower frequency than the light source. The emitted light is captured by sensors and the particles are analyzed according to fluctuations in brightness of each detector and/or fluorescence emission. The result of this process is the formation of images in real time for each cell fluorescence, scattering and transmission of light. A major problem of flow cytometry is to determine whether a subset of cells labeled with fluorochrome-conjugated monoclonal antibodies is positive or negative. Gains compensation should be determined and applied correctly, and controls should be conducted concisely with the adoption of a biological control, isotype control or Fluorescence Minus One (FMO). None of these controls are considered ideal, and must be chosen according the number of different labeling done, rarity of molecule expression on surface or intracellularly in certain cell subsets, overlap of wavelengths or unspecific binding of the fluorochrome-conjugated antibodies. Conclusion: due to its great potential, flow cytometry has been expanded to diverse fields of biological sciences, and is routinely used in clinical diagnostic, biotechnology, and basic and applied research.


2021 ◽  
Author(s):  
Malihe Babaei Zarch ◽  
Masoud Mirzaei ◽  
Maryam Bazargan ◽  
Sandeep K Gupta ◽  
Franc Meyer ◽  
...  

As an extension of our interest in polyoxometalates (POMs) and lanthanoids, we report the design and synthesis of two polyoxometalate-based frameworks under hydrothermal conditions; [Ho4(PDA)4(H2O)11][(SiO4)@W12O36]·8H2O (1) and [Tb4(PDA)4(H2O)12][(SiO4)@W12O36]·4H2O (2) (H2PDA...


2010 ◽  
Vol 96 (8) ◽  
pp. 082115 ◽  
Author(s):  
L. Zhu ◽  
K. L. Yao ◽  
Z. L. Liu

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 90
Author(s):  
Xin-Yi Zhu ◽  
Bo-Ran Wang ◽  
Yi Gu ◽  
Hao Zhu ◽  
Lin Chen ◽  
...  

Since the first introduction of one-dimensional nanochannels for single-molecule detection, there has been increasing interest in modern nanofluidic systems, such as chemical and biological sensing applications. Recently developed nanowires (NWs) and nanotubes (NTs) have received tremendous attention due to their unique geometrical, physical and chemical properties, which are very attractive in this field. Here, we review the recent research activities in the field of novel nanofluidic cells based on NWs and NTs. First, we give a brief introduction of this field. Then the common synthesis methods of NWs and NTs are summarized. After that, we discuss the working principle and sensing mechanism of nanofluidic devices, which is fundamental to the interaction between these nanostructures and small molecules. Finally, we present the NW- and NT-based devices for chemical and bio-sensing applications, such as gas sensing, pathogen detection, DNA sequencing, and so forth.


2017 ◽  
Vol 8 (7) ◽  
pp. 1695-1700 ◽  
Author(s):  
L. Escalera-Moreno ◽  
N. Suaud ◽  
A. Gaita-Ariño ◽  
E. Coronado

CrystEngComm ◽  
2021 ◽  
Vol 23 (15) ◽  
pp. 2825-2834
Author(s):  
Shao-Min Xu ◽  
Zhong-Wu An ◽  
Wei Zhang ◽  
Yi-Quan Zhang ◽  
Min-Xia Yao

Based on the organic ligand H2L, three Dy-based complexes were synthesized, and structurally and magnetically characterized. Theoretical calculations are performed to analyze the performance of single molecule magnets.


Author(s):  
Alessandro Lunghi ◽  
Federico Totti

The rationalization of single molecule magnets’ (SMMs) magnetic properties by quantum mechanical approaches represents a major task in the field of the Molecular Magnetism. The fundamental interpretative key of molecular magnetism is the phenomenological Spin Hamiltonian and the understanding of the role of its different terms by electronic structure calculations is expected to steer the rational design of new and more performing SMMs. This paper deals with the ab initio calculation of isotropic and anisotropic exchange contributions in the Fe(III) dimer [Fe2(OCH3)2(dbm)4]. This system represents the building block of one of the most studied Single Molecule Magnets ([Fe4RC(CH2O)3)2(dpm)6] where R can be an aliphatic chain or a phenyl group just to name the most common functionalization groups) and its relatively reduced size allows the use of a high computational level of theory. Calculations were performed using CASSCF and NEVPT2 approaches on the X-ray geometry as assessment of the computational protocol, which has then be used to evinced the importance of the outer coordination shell nature through organic ligand modelization. Magneto-structural correlations as function of internal degrees of freedom for isotropic and anisotropic exchange contributions are also presented, outlining for the first time the extremely rapidly changing nature of the anisotropic exchange coupling.


Sign in / Sign up

Export Citation Format

Share Document