Deformation Research of T10 Steel at Low Stress Repeated Impact

2012 ◽  
Vol 487 ◽  
pp. 445-448
Author(s):  
Jiong Jie Wu ◽  
Ge Yan Fu

The research use an impact test enginery, choose T10 steel samples, and do a low stress repeated impact collisions experiment. By comparing two kinds of different heat treatment of T10 steel, analyze and research its macro plastic deformation phenomena and plastic accumulation law in low stress repeated collision impact load, and observe its hardness change by hardness microscopicand and its metallographic structure by metallographic microscope to discuss its deformation causes.

2010 ◽  
Vol 154-155 ◽  
pp. 1100-1103
Author(s):  
Ru Shu Peng ◽  
De Wen Tang ◽  
Qiong Liu

On the property of repeated impact load, the attrition, hardening and plasticity warp of the laser cladding sampling were researched by using stress wave spread theory. Results show that under repeated impact loads, stress wave occurs on the metallurgical joint surface of the coat and the basis, forming stretch wave that causes coat slitting and angle splitting. The micro-pits failure and deep exfoliation occur on the coat surface because of the stress centralization. The accumulation of impact load energy cause hardness change and plasticity warp.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2154
Author(s):  
Josef Daniel ◽  
Radek Žemlička ◽  
Jan Grossman ◽  
Andreas Lümkemann ◽  
Peter Tapp ◽  
...  

Protective hard PVD coatings are used to improve the endurance of the tools exposed to repeated impact load, e.g., fine blanking punches. During the fine blanking process, a coated punch repeatedly impacts sheet metal. Thus, the coating which protects the punch surface is exposed to the dynamic impact load. On the other hand, the laboratory method of dynamic impact testing is well known and used for the development and optimization of protective coatings. This paper is focused on the comparison of tool life and lifetime of the industrial prepared PVD coatings exposed to repeated dynamic impact load in the industrial fine blanking process and the laboratory dynamic impact testing. Three different types of protective coatings were tested and the results were discussed. It was shown that the lifetime of coated specimens in both the fine blanking and the dynamic impact processes was influenced by similar mechanical properties of the protective coatings. The qualitative comparison shows that the lifetime obtained by the dynamic impact test was the same as the lifetime obtained by the industrial fine blanking process. The laboratory impact test appears to be a suitable alternative for the optimisation and development of protective PVD coatings for punches used in the industrial fine blanking process.


2011 ◽  
Vol 311-313 ◽  
pp. 778-781
Author(s):  
Cheng Yuan Chu ◽  
Shi Hong Shi ◽  
Ge Yan Fu ◽  
Mei Xu

1Cr18Ni9Ti specimens were observed the plastic deformation by the method of coordinate grid under the low stress repeated impact test. And it found some phenomenon is similar to the creep phenomenon ,so the paper call it “repeated impact creep”. Proceeding from the theory of creep deformation, the deformation law of the specimens was analyzed and the relevant mathematical model was established.Finally, it found that the strain rate of repeated impact creep is decreased by the increase of impact times and the increase of layer’s depth.


2010 ◽  
Vol 426-427 ◽  
pp. 294-298
Author(s):  
Shi Hong Shi ◽  
Ge Yan Fu

Low stress repeated impact experiments and test were carried out on medium carbon steel and stainless steel samples which is clad with high-strength Co-based or Ni-based alloy. The results showed that under low stress repeated impact load, which is much lower than the yield strength of material, plastic deformation will be occurred on the coating and part of its below base material. The average plastic deformation degree caused by each impact is increased at first, and then declined with the increase of impact times. Accumulated impact will lead to macroscopic plastic deformation and material hardening. The degree of deformation and the size of deformation area are related to the impact stress value and the material’s strength. The degree of deformation and hardening decline from the exterior to the interior, and only occur on the impact surface and a certain depth below, forming a ‘deformable area’. Based on our analysis, we consider that low stress repeated impact deformation is a kind of accumulative fatigue damage. The energy absorbed by material under repeated impact load, is larger than that absorbed at the same peak value of stress under static load or static fatigue load. Moreover, the energy absorbability is inversely proportional to the impact distance. Repeated impact may increase the movability of atom, reduce the critical shearing stress, that make the dislocation be initiated and increased easily.


2013 ◽  
Vol 419 ◽  
pp. 316-320
Author(s):  
Zheng Dong He ◽  
Jian Shi ◽  
Ge Yan Fu

In engineering applications, many key components will fail with macroscopic accumulated plastic deformation, repeated impact loads, even though the stress is far less than the material yield limit. This kind of load can be called low stress repeated impact load in this study. It is observed that the plastic deformation of the material is mainly manifested in closer to the site from the collision surface. The strain decreases with the increasing depth from the surface, and it will be smaller and smaller with the increasing number of the impact. Finally, the strain tends to be stable, which means the material will no longer be deformed[1]. Take the method of preparation of the exponential gradient coating on 304stainless steel for performance enhancement, in order to satisfy and expand its application scope and conditions.


Author(s):  
Serafino Caruso ◽  
Stano Imbrogno

AbstractGrain refinement by severe plastic deformation (SPD) techniques, as a mechanism to control microstructure (recrystallization, grain size changes,…) and mechanical properties (yield strength, ultimate tensile strength, strain, hardness variation…) of pure aluminium conductor wires, is a topic of great interest for both academic and industrial research activities. This paper presents an innovative finite element (FE) model able to describe the microstructural evolution and the continuous dynamic recrystallization (CDRX) that occur during equal channel angular drawing (ECAD) of commercial 1370 pure aluminium (99.7% Al). A user subroutine has been developed based on the continuum mechanical model and the Hall-Petch (H-P) equations to predict grain size variation and hardness change. The model is validated by comparison with the experimental results and a predictive analysis is conducted varying the channel die angles. The study provides an accurate prediction of both the thermo-mechanical and the microstructural phenomena that occur during the process characterized by large plastic deformation.


2010 ◽  
Vol 667-669 ◽  
pp. 925-930
Author(s):  
S.V. Krymskiy ◽  
Elena Avtokratova ◽  
M.V. Markushev ◽  
Maxim Yu. Murashkin ◽  
O.S. Sitdikov

The effects of severe plastic deformation (SPD) by isothermal rolling at the temperature of liquid nitrogen combined with prior- and post-SPD heat treatment, on microstructure and hardness of Al-4.4%Cu-1.4%Mg-0.7%Mn (D16) alloy were investigated. It was found no nanostructuring even after straining to 75%. Сryodeformation leads to microshear banding and processing the high-density dislocation substructures with a cell size of ~ 100-200 nm. Such a structure remains almost stable under 1 hr annealing up to 200oC and with further temperature increase initially transforms to bimodal with a small fraction of nanograins and then to uniform coarse grained one. It is found the change in the alloy post–SPD aging response leading to more active decomposition of the preliminary supersaturated aluminum solid solution, and to the alloy extra hardening under aging with shorter times and at lower temperatures compared to T6 temper.


2007 ◽  
Vol 550 ◽  
pp. 289-294
Author(s):  
Suk Hoon Kang ◽  
Jae Hyung Cho ◽  
Joon Sub Hwang ◽  
Jong Soo Cho ◽  
Yong Jin Park ◽  
...  

Cold drawn gold wires are widely applied in electronic packaging process to interconnect micro-electronic components. They basically provides a conducting path for electronic signal transfer, and experience thermo-mechanical loads in use. The mechanical stability of drawn gold wires is a matter of practical concern in the reliable functioning of electronic devices. It is known that mechanical properties of materials are deeply related to the microstructure. With appropriate control of deformation and heat processes, the mechanical properties of final products, such as tensile strength and elongation can be improved. Severe plastic deformation by torsion usually contributes to grain refinement and increment of strength. In this study, microstructure variations with torsion strain followed by drawing and heat treatment were investigated. Analyses by focused ion beam (FIB) and electron backscattered diffraction (EBSD) were carried out to characterize the effect of deformation and heat treatment on the drawn gold wires. Pattern quality of EBSD measurements was used as a quantitative measure for plastic deformation.


Author(s):  
E.G. Astafurova ◽  
◽  
K.A. Reunova ◽  
S.V. Astafurov ◽  
M.Yu. Panchenko ◽  
...  

We investigated the phase composition, plastic deformation and fracture micromechanisms of Fe-(25-26)Cr-(5-12)Mn-0.15C-0.55N (wt. %) high-nitrogen chromium-manganese steel. Obtained by the method of electron-beam 3D-printing (additive manufacturing) and subjected to a heat treatment (at a temperature of 1150°C following by quenching). To establish the effect of the electron-beam 3D-printing process on the phase composition, microstructure and mechanical properties of high-nitrogen steel, a comparison was made with the data for Fe-21Cr-22Mn-0.15C-0.53N austenitic steel (wt. %) obtained by traditional methods (casting and heat treatment) and used as a raw material for additive manufacturing. It was experimentally established that in the specimens obtained by additive manufacturing method, depletion of the steel composition by manganese in the electron-beam 3D-printing and post-built heat treatment contributes to the formation of a macroscopically and microscopically inhomogeneous two-phase structure. In the steel specimens, macroscopic regions of irregular shape with large ferrite grains or a two-phase austenite-ferrite structure (microscopic inhomogeneity) were observed. Despite the change in the concentration of the basic elements (chromium and manganese) in additive manufacturing, a high concentration of interstitial atoms (nitrogen and carbon) remains in steel. This contributes to the macroscopically heterogeneous distribution of interstitial atoms in the specimens - the formation of a supersaturated interstitial solid solution in the austenitic regions due to the low solubility of nitrogen and carbon in the ferrite regions. This inhomogeneous heterophase (ferrite-austenite) structure has high strength properties, good ductility and work hardening, which are close to those of the specimens of the initial high-nitrogen austenitic steel used as the raw material for additive manufacturing.


2017 ◽  
Vol 753 ◽  
pp. 222-227
Author(s):  
Jun Hui Yin ◽  
Chao Xiong ◽  
Hui Yong Deng ◽  
Yan Long Zhang

During the moving stage of the projectile, the impact load produced by the detonation of the explosive powder acts on the ribbon, causing the plastic band deformation to occur rapidly and the surface temperature rapidly increases. In this paper, the evolution mechanism of the plastic deformation of brass band is studied, and the recrystallization process of the surface metal is still at the meso-scale scale. The recrystallization and grain growth stage sexual characteristics.


Sign in / Sign up

Export Citation Format

Share Document