The Properties of MgO-C Materials with Different Graphite Size Distributions

2012 ◽  
Vol 503-504 ◽  
pp. 611-614
Author(s):  
Guo Qi Liu ◽  
Hong Xia Li ◽  
Jin Song Yang ◽  
Jian Bin Yu ◽  
Wen Gang Yang ◽  
...  

Monolithic stopper is one of the functional refractories. The security and continuity of the continuous casting maybe irrupted by the abnormal condition of monolithic stopper. MgO-C material composite monolithic stopper is often used to cast Ca-treated steel. But the thermal expansion of MgO-C materials is relatively large and there is a poor thermal matching between rod part and body part. To improve thermal shock resistance of MgO-C materials, the properties of MgO-C materials with different graphite size distributions are researched. The results show that 1000 mesh graphite addition will decrease thermal shock resistance, fracture energy and thermal expansion will increase. MgO-C materials with combined addition of 595 and 199 graphite present good thermal shock resistance. The trends of thermal shock resistance for MgO-C refractories by immerging molten steel methods agree with that of Rst.

2021 ◽  
Vol 321 ◽  
pp. 131-140
Author(s):  
Martin Nguyen ◽  
Radomír Sokolař

Forsterite refractory ceramics is utilized in the metallurgical and cement industries as a lining of metallurgical furnaces and rotary kilns for its high refractoriness up to 1850°C and refractoriness under load above 1600°C. Another significant property of forsterite is its coefficient of linear thermal expansion utilized in the electrotechnical industry for ceramic-metal joints. Addition of aluminium oxide into the raw material mixture results in creation of magnesium-alumina spinel (MgO·Al2O3) which improves sintering, thermal shock resistance and mechanical properties in comparison with pure forsterite ceramics. Inexpensive source of aluminium oxide is fly ash. Utilization of fly ash, secondary energetic product of coal-burning power plants, is important for the environment and sustainable development. This paper evaluated properties of fly ash-based forsterite-spinel ceramics in comparison with alumina-based forsterite-spinel ceramics. Forsterite-spinel ceramics was synthesized from olivine, calcined magnesite and fly ash/alumina powders. XRD analysis was used to determine mineralogical composition, thermal analyses were used to determine the behaviour during firing and scanning electron microscopy to determine the morphology of crystal phases. Refractoriness of pyrometric cones, refractoriness under load, thermal shock resistance, coefficient of linear thermal expansion, water absorption, porosity and modulus of rupture were also determined on fired test samples.


2007 ◽  
Vol 544-545 ◽  
pp. 379-382
Author(s):  
Kyung Hun Jang ◽  
Bum Rae Cho

The effect of CaO, MgO and SiO2 as a flux on the sinterability of zirconia toughened alumina(ZTA) used for plasma reactors was investigated and the effect of zircon addition on thermal shock resistance of ZTA with 15wt.% of ZrO2 was also investigated. The resultant data revealed that ZTA shows the best sinterability at the composition of 2wt.% of CaO, 4wt.% of MgO and 2wt.% of SiO2 and at the sintering temperature of 1350°C. Thermal shock resistance of ZTA containing zircon was improved significantly. It is shown that ZTA containing 10wt.% of zircon shows better thermal shock resistance than others. This fact can be explained due to the low thermal expansion coefficient of zircon. It was concluded that zircon is an effective material to improve thermal shock resistance of alumina ceramics.


2012 ◽  
Vol 503-504 ◽  
pp. 1142-1145
Author(s):  
Fan Qian ◽  
Hong Xia Li ◽  
Guo Qi Liu ◽  
Wen Gang Yang ◽  
Jin Song Yang ◽  
...  

This paper introduce the relationship between fracture energy of refractories and its thermal shock resistance, and research status about fracture energy of refractories. It shows that investigation on fracture energy of refractories at high temperature is positive significance for evaluation of thermal shock resistance, and wedge splitting method for fracture energy of refractories is an effective method.


2011 ◽  
Vol 415-417 ◽  
pp. 138-141
Author(s):  
Rui Sheng Wang ◽  
Jun Hong Zhao ◽  
Ying Na Wei ◽  
Fu Hua Peng ◽  
Heng Yong Wei

β-Sialon bonded ZrO2 composites were prepared by reaction sintering process using β-Sialon and CaO stabilized ZrO2 powders as raw materials.The effect of β-Sialon powder additions on the properties of the composites was investigated. The results show that the samples with 10 wt% of β-Sialon addition had the lowest apparent porosity (29.80%) and the highest of flexural strength (68.70MPa). The thermal shock resistance in carbon addition of the composites could be improved by addtion of 5wt% β-Sialon. It may be relative with that the sample had the lowest thermal expansion coefficient in vacuum.


Author(s):  
Y.-K. Lee ◽  
H.-J. Kim ◽  
R.-W. Chang

Abstract The thermal expansion characteristics of plasmasprayed coatings were investigated. The thermal expansion measurements were carried out up to 1200°C on thick coatings that were substrate free. The effects on the thermal expansion coefficients were studied in terms of composition, powder size, porosity, and the phase transformation. The relationships between the thermal shock resistance and the thermal expansion properties of the coatings are also discussed.


2012 ◽  
Vol 538-541 ◽  
pp. 2277-2280
Author(s):  
You Fu Guo ◽  
Ming Yue Zheng ◽  
Jing Long Bu ◽  
Yue Jun Chen ◽  
Li Xue Yu ◽  
...  

Silicon carbide with diffierent granularity was used as raw material, quartz, silica fume, aluminum powder or alumina was used as additive with dosages of 1% (in mass, similarly hereinafter), 3% and 5%. Silicon carbide refractory material was prepared in oxidizing atmosphere at 1400 °C for 3 h. Performence of samples were researched by measurements of apparent porosity, bulk density, bending strength at room temperature, thermal shock resistance and thermal expansion rate, and analyzed by SEM. The results showed that samples added silica fume have low thermal expansion rate and apparent porosity, high bending strength and bulk density, good thermal shock resistance, compact texture as well. It can be deduced that 5% silica fume plays the excellent role to improve integrated performance of silicon carbide refractory material.


Author(s):  
J.H. Mohmmed

Purpose: A new high thermal stability single layer glass–ceramic coating system designing for applied on various grade of steel alloy has been developed in this work. Design/methodology/approach: The thermal shock resistance, thermal conductivity and thermal expansion of the coating system were evaluated by using suitable standard tests. Some crystalline agents (Lithium oxide Li2O, Titanium oxide TiO2, Zircon ZrSiO4 and Feldspar CaO∙Al2O3∙2SiO2) were add at constant ratio 6% to coating system to evaluate their effects on the resultant coatings. Findings: The results indicate the suitability of these coatings for protection of metal substrate. Also the results show that the properties of resultant coating were hardly affected by composition and concentration of crystalline agent. Research limitations/implications: Coating with lithium oxide has the lowest thermal expansion, which means the highest thermal shock resistance. While, values of thermal conductivity were too close for all types of coating. Originality/value: Generally, the resultant coating properties have been enhanced in all cases; this is associated with the introduce the crystalline agent which lead to the formation of a complex network of crystalline phases.


Sign in / Sign up

Export Citation Format

Share Document