Influence of Additives on Performance of Silicon Carbide Refractory

2012 ◽  
Vol 538-541 ◽  
pp. 2277-2280
Author(s):  
You Fu Guo ◽  
Ming Yue Zheng ◽  
Jing Long Bu ◽  
Yue Jun Chen ◽  
Li Xue Yu ◽  
...  

Silicon carbide with diffierent granularity was used as raw material, quartz, silica fume, aluminum powder or alumina was used as additive with dosages of 1% (in mass, similarly hereinafter), 3% and 5%. Silicon carbide refractory material was prepared in oxidizing atmosphere at 1400 °C for 3 h. Performence of samples were researched by measurements of apparent porosity, bulk density, bending strength at room temperature, thermal shock resistance and thermal expansion rate, and analyzed by SEM. The results showed that samples added silica fume have low thermal expansion rate and apparent porosity, high bending strength and bulk density, good thermal shock resistance, compact texture as well. It can be deduced that 5% silica fume plays the excellent role to improve integrated performance of silicon carbide refractory material.

2012 ◽  
Vol 217-219 ◽  
pp. 1131-1134
Author(s):  
Ming Yue Zheng ◽  
You Fu Guo ◽  
Jing Long Bu ◽  
Yue Jun Chen ◽  
Li Xue Yu ◽  
...  

Silicon carbide with diffierent granularity and three grain composition was used as raw material. Silicon carbide refractory material was prepared in oxidizing atmosphere at 1400 °C, 1450 °C and 1500 °C for 3 h. Performence of samples were researched by measurements of apparent porosity, bulk density, bending strength at room temperature, thermal shock resistance and thermal expansion rate, and analyzed by SEM. The results showed that samples sintered at 1400 °C have low thermal expansion rate and apparent porosity, high bending strength and bulk density, good thermal shock resistance, compact texture as well. It can be deduced that (1.0-0.5mm) / (0.5-0.1mm) / (45μm) / (5μm) = 50 / 17/ 20/ 13 is the best grain composition to improve integrated performance of silicon carbide refractory material.


2012 ◽  
Vol 549 ◽  
pp. 691-694
Author(s):  
Fang Zhang ◽  
Zhi Liang Huang

The study is carried out combing with the production practice in Danjiangkou Hongyuan SiC limited. Si3N4 and SiC were prepared successfully from SiC and Silicon power in nitrogen atmosphere at 1425°C and 1375°C sintering temperature by the serial of techniques, such as ingredients, mixing, molding and drying, respectively. In the actual production, silicon powder content and sintering temperature will directly influence the products of the bending strength and thermal shock resistance. By measuring bending strength, porosities, bulk density, XRD and FESEM, the bending strength and thermal shock resistance of samples were studied mainly by changing sintering temperature and silicon powder content. The results show that bending strength and thermal shock resistance of sample which was added 16% Si powder is best. And bending strength and thermal shock resistance of sample of 1425°C sintering temperature is higher than that of 1375°C sintering temperature.


2012 ◽  
Vol 512-515 ◽  
pp. 575-579
Author(s):  
J.H. Pee ◽  
A.N. Kwak ◽  
Jong Young Kim ◽  
Yoo Jin Kim ◽  
Kyung Ja Kim

Promoting of mullite generation has been studied by replacing kaolinite with pyrophyllite because of mullite has excellent strength and thermal shock resistance. Effects of promoting of mullite generation and vitrification by replacing kaolinite with pyrophyllite on the mechanical and thermal properties were investigated. Addition of 45-55% pyrophyllite as a replacement of kaolinite (pyrophyllite (45-55%)-feldspar (30%)-clay (20%)) could vitrify samples (water absorption: 0.05%, bulk density: 2.66g/cm3) and improve the strength (122MPa) of samples fired at 1280°C. In ternary porcelain system, pyrophyllite-feldspar-clay, mullite generation of samples with 50% pyrophyllite reaches about 78.7% and thermal expansion coefficient is 5.4×10-6/K. Beyond 50% pyrophyllite addition, quartz and cristobalite phases increased. And thermal expansion coefficient of samples decreased with increasing of mullite amount.


2011 ◽  
Vol 194-196 ◽  
pp. 1755-1758
Author(s):  
Jing Long Bu ◽  
Yan Qing Cai ◽  
Li Xue Yu ◽  
Zhi Fa Wang ◽  
Rong Lin Wang

The composites in the MgO-Al2O3-Fe2O3 system were prepared using high pure magnesia and alumina as raw materials and ferric oxide powder as additive. The effect of sintering temperatures on the sintering performance and thermal shock resistance of the composites was studied. The results showed that both the apparent porosity and linear change ratio of the samples decreased with the increase of sintering temperatures, and their bulk density and bending strength increased accordingly. The sample sintered at 1550°C exhibits excellent thermal shock resistance. The XRD and SEM results indicated that the crystal phase of the samples remained the same, but their microstructure became denser as the sintering temperatures increased from 1500°C to 1600°C. As a result, the composites could be sintered at about 1550°C, which has a potential application in cement rotary kiln linings.


2021 ◽  
Vol 321 ◽  
pp. 131-140
Author(s):  
Martin Nguyen ◽  
Radomír Sokolař

Forsterite refractory ceramics is utilized in the metallurgical and cement industries as a lining of metallurgical furnaces and rotary kilns for its high refractoriness up to 1850°C and refractoriness under load above 1600°C. Another significant property of forsterite is its coefficient of linear thermal expansion utilized in the electrotechnical industry for ceramic-metal joints. Addition of aluminium oxide into the raw material mixture results in creation of magnesium-alumina spinel (MgO·Al2O3) which improves sintering, thermal shock resistance and mechanical properties in comparison with pure forsterite ceramics. Inexpensive source of aluminium oxide is fly ash. Utilization of fly ash, secondary energetic product of coal-burning power plants, is important for the environment and sustainable development. This paper evaluated properties of fly ash-based forsterite-spinel ceramics in comparison with alumina-based forsterite-spinel ceramics. Forsterite-spinel ceramics was synthesized from olivine, calcined magnesite and fly ash/alumina powders. XRD analysis was used to determine mineralogical composition, thermal analyses were used to determine the behaviour during firing and scanning electron microscopy to determine the morphology of crystal phases. Refractoriness of pyrometric cones, refractoriness under load, thermal shock resistance, coefficient of linear thermal expansion, water absorption, porosity and modulus of rupture were also determined on fired test samples.


TANSO ◽  
1985 ◽  
Vol 1985 (120) ◽  
pp. 21-27 ◽  
Author(s):  
Kenji Miyazaki ◽  
Hisayoshi Yoshida ◽  
Kazuo Kobayashi

2007 ◽  
Vol 544-545 ◽  
pp. 379-382
Author(s):  
Kyung Hun Jang ◽  
Bum Rae Cho

The effect of CaO, MgO and SiO2 as a flux on the sinterability of zirconia toughened alumina(ZTA) used for plasma reactors was investigated and the effect of zircon addition on thermal shock resistance of ZTA with 15wt.% of ZrO2 was also investigated. The resultant data revealed that ZTA shows the best sinterability at the composition of 2wt.% of CaO, 4wt.% of MgO and 2wt.% of SiO2 and at the sintering temperature of 1350°C. Thermal shock resistance of ZTA containing zircon was improved significantly. It is shown that ZTA containing 10wt.% of zircon shows better thermal shock resistance than others. This fact can be explained due to the low thermal expansion coefficient of zircon. It was concluded that zircon is an effective material to improve thermal shock resistance of alumina ceramics.


2013 ◽  
Vol 315 ◽  
pp. 477-481 ◽  
Author(s):  
I.A. Rafukka ◽  
B. Onyekpe ◽  
Y. Tijjani

The physical properties of some materials used by local foundries were investigated with a view to assessing their suitability for use as low heat duty refractory bricks. The samples were collected from Malamai village, Gezawa Local Government, Kano state; they are Gezawa clay and Burji (Clay). The samples were crushed, ground, sieved and the chemical compositions were determined. The clay samples were treated separately as well as blended with Gezawa clay in different proportions and molded in to bricks. The bricks were dried and fired to 1100. Test for refractoriness, thermal shock resistance, linear shrinkage; bulk density, porosity and compressive strength were carried out on each of the specimen. Burji blended with 50% to 90% Gezawa clay gave improved thermal shock resistance with a refractoriness of 1300 and hence could be used for non ferrous melting cupolas.


2012 ◽  
Vol 509 ◽  
pp. 240-244
Author(s):  
Li Ying Tang ◽  
Xi Cheng ◽  
Ping Lu ◽  
Fang Yue

Abstract: Cordierite–alumina ceramics were prepared with the raw materials of cordierite and α-alumina powder, and TiO2,CuO and MgO were added as composite additives. The effect of MgO/ CuO ratios on the microstructure, thermal conductivity and thermal shock resistance of cordierite–alumina ceramics were researched by X-ray diffraction, scanning electron microscopy and laser flash analyzer; the bulk density and the porosity of cordierite – alumina ceramics were measured. The results show that with increasing of MgO/CuO ratios, the bulk density and thermal conductivity increase firstly and then decrease, and have a minimum with 0.4wt% MgO and 0.667 MgO/CuO; and the porosity of ceramics decreases firstly and then increases and has a maximum with 0.4wt% MgO and 0.667 MgO/CuO;There are little changes in the size of the grain of the ceramics, and a small amount of magnesium aluminate spinel precipitate; the thermal shock resistance performance of the ceramics is developed with the increasing of MgO/CuO ratios.


Sign in / Sign up

Export Citation Format

Share Document