The Performance of a Combined Thermal and Electric System of Solar Energy Conversion with TEM

2012 ◽  
Vol 512-515 ◽  
pp. 311-316
Author(s):  
Chun Po Liao ◽  
Jau Huai Lu

Combined solar thermal and electric system is a combination of solar thermal system and solar electric system, such that both electric power and hot water can be produced at the same time. The solar collecting system includes a concentrator, frames, and a solar tracking system. The hot water system includes a flat collector, flow channels, water tubes, a storage tank, and a water pump. The power generation system is composed of thermoelectric modules and the associated controller. A miniature system was established and its performance was tested in this study. It was found that at the solar radiation flux of 800 W/m2, a total efficiency of 50% could be achieved. However, most of the solar energy has been converted to thermal energy instead of electricity. Our thermal electric system’s total efficiency can reach 43% and power generation of thermoelectric modules is only 0.6%.

2012 ◽  
Vol 193-194 ◽  
pp. 30-33
Author(s):  
Xue Ying Wang ◽  
Dong Xu ◽  
Ya Jun Wu

This article analyzes the problem in application the solar system was used in residential building, puts forward the requirements to use energy and choose the setting of the solar energy collector from two aspects of building and drainage design respectively. In addition, the article explicates andthe solar energy collector and building integrated design and the development of solar energy collector. At last, the article puts forward some Suggestions on the improvement and development of residential solar hot water system and the design of the hot water supply bath solution of practice to make solar energy and low power assisted by night combining.


2014 ◽  
Vol 587-589 ◽  
pp. 243-246
Author(s):  
Chu Ping Lu ◽  
Kai Ji

This paper is as an example of the hot water supply of the hotel in the city,The design of the hot water system is the solar energy and the air source heat pump,includes:the selection calculation of the air source heat pump of the water heater , the selection and calculation of the solar collector,the determination of the thermal storage tank and the determination of the circulating water pump of heat collecting .


Author(s):  
Anagha Pathak ◽  
Kiran Deshpande ◽  
Sandesh Jadkar

There is a huge potential to deploy solar thermal energy in process heat applications in industrial sectors. Around 50 % of industrial heat demand is less than 250 °C which can be addressed through solar energy. The heat energy requirement of industries like automobile, auto ancillary, metal processing, food and beverages, textile, chemical, pharmaceuticals, paper and pulp, hospitality, and educational institutes etc. can be partially met with solar hybridization based solutions. The automobile industry is one of the large consumers of fossil fuel energy in the world. The automobile industry is major economic growth driver of India and has its 60 % fuel dependence on electricity and remaining on oil based products. With abundant area available on roof top, and need for medium temperature operation makes this sector most suitable for substitution of fossil fuel with renewable solar energy. Auto sector has requirement of heat in the temperature range of 80-140 oC or steam up to 2 bar pressure for various processes like component washing, degreasing, drying, boiler feed water preheating, LPG vaporization and cooling. This paper discusses use of solar energy through seamless integration with existing heat source for a few processes involved in automobile industries. Integration of the concentrated solar thermal technology (CST) with the existing heating system is discussed with a case study for commonly used processes in auto industry such as component washing, degreasing and phosphating. The present study is undertaken in a leading automobile plant in India. Component cleaning, degreasing and phosphating are important processes which are carried out in multiple water tanks of varying temperatures. Temperatures of tanks are maintained by electrical heaters which consumes substantial amount of electricity. Non-imaging solar collectors, also known as compound parabolic concentrators (CPC) are used for generation of hot water at required process temperature. The CPC are non-tracking collectors which concentrate diffuse and beam radiation to generate hot water at required temperature. The solar heat generation plant consists of CPC collectors, circulation pump and water storage tank with controls. The heat gained by solar collectors is transferred through the storage tank to the process. An electric heater is switched on automatically when the desired temperature cannot be reached during lower radiation level or during non-sunny hours/days. This solar heating system is designed with CPC collectors that generate process heating water as high as 90OC. It also seamlessly integrates with the existing system without compromising on its reliability, while reducing electricity consumption drastically. The system is commissioned in April, 2013 and since then it has saved ~ 1,75,000 units of electricity/year and in turn 164 MT of emission of CO2 annually.


Solar Energy ◽  
2004 ◽  
Author(s):  
Oleg P. Kovalev ◽  
Alexandr V. Volkov

During long-term time, the laboratory of non-traditional energetic is been busy with development and introduction of solar water heating systems for hot water supply. The systems with solar collectors of 40 m2 area have been developed and introducted. For estimation of their efficiency we should know flux density of solar radiation, proceeding to surface at the given place. However in Primorye Region at actinometrical watching only four meteostations in the Southern part are carrying out straight measurements of solar radiation flux, and the others record data which concern only solar radiation regime (the amount of solar radiation hours, relation of watching duration of solar radiation to possible duration, the amount of days without sun, etc.). We suggested the expression, which according to know data of solar radiation and cloudiness, recorded practically on all meteorological stations gives possibility to calculate for Primorye Region month sums of total radiation proceeding to horizontal surface. The comparison of estimated values with measured ones gives the error to 3...9% with regard to average many years values, and are in the range of variability of measured values for separate years. In Primorye Region more than 250 m2 of solar collectors were installed; and among them 150 m2 were developed with the laboratory, to position on 2003.11.01.   NOTE: This paper was presented at the 2004 International Solar Energy Conference and was inadvertently omitted from the 2004 ASME proceedings. The page range refers to the 2005 International Solar Energy Conference Print Proceedings, where it was subsequently published.


Author(s):  
Duan Liqiang ◽  
Lv Zhipeng ◽  
Wang Zhen

Abstract The integrated solar energy-driven chiller combined cycle system (SCCC) has a problem of low annual solar energy utilization. The solar thermal efficiency and power output of the traditional integrated solar combined cycle system (ISCC) are limited by the integrated solar mirror field area and Rankine cycle efficiency. This paper presents a new system, on the basis of the combined cycle system with the three pressure HRSG with reheat, the solar energy is integrated into the chiller for cooling the compressor inlet air of gas turbine and the heat recovery steam generator (HRSG) for increasing the power output simultaneously. The Aspen Plus, TRNSYS and EBSILON softwares are applied in this paper to build the models of the overall system. The solar thermal efficiency, annual solar power generation and annual solar thermal efficiency are used to evaluate the performances of the new system, the traditional ISCC system and SCCC system. During the summer solstice, the proportions of solar energy used in cooling and heating are set as 40% and 60% in new system, respectively. The research results show that the new system has a higher power output (406.37MW), thermal cycle efficiency (53.61%) and solar thermal efficiency (48.85%) compared with the traditional ISCC system (385.63MW, 51.67%, and 24.43%, respectively) at the design point. The new system can regulates the proportions of solar energy used in the chiller and HRSG based on the monthly meteorological data, in order to maximize the annual solar energy utilization and annual solar power generation. The new system’s annual solar energy utilization hours (2071h) and solar power generation (25.863GW·h) are far greater than those of SCCC system (1498h, 18.185GW·h, respectively). Therefore, the proposed new system with the simultaneous integrations of solar energy with both the chiller and HRSG not only greatly increases the utilization rate of solar energy, but also has the significant thermodynamic advantages.


2014 ◽  
Vol 501-504 ◽  
pp. 2315-2318
Author(s):  
Jin Bin Li ◽  
Xiao Wei Zhao ◽  
Xiao Fei Lu

Based on the climate characteristics of the region which is hot in summer and cold in winter , this article introduces a solar energy heating technology, taking Hangzhou as an example and combining the theory of building energy efficiency. It is a collector-tank-double pump cycle of floor heating system, combining solar heating system with solar hot water system. Collectors are concentrating vacuum tube collectors, which can efficiently use solar energy. Combining solar collector with the building integration, we can use solar energy resources, and it can play shading effect.


2012 ◽  
Vol 23 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Jacob G. Fantidis ◽  
Dimitrios V. Bandekas ◽  
Constantinos Potolias ◽  
Nick Vordos ◽  
Kostas Karakoulidis

The use of solar thermal collectors is an economic alternative for water heating. In Greece more than 4 million m2 of collector area has been installed; however, the financial and economic crisis has dealt the solar thermal market a heavy blow. The aim of the paper is twofold: firstly, to present the new legislations and combined efforts taken by the government in order to give the solar thermal market a boost; secondly, to evaluate the effect of these efforts and calculate the new financial data from the citizens. For the promotion of solar water heaters, new legislations and concerted efforts are taken by the government. The effect of the new incentive program on the payback time of a typical glazed solar hot water system in Greece was investigated in this work. Long-term meteorological data from 47 stations are analyzed in order to evaluate the potential of solar water heater application at each site in Greece. The RETScreen software was used to predict the financial viability and the green house gas emissions reductions. The economical indicators showed that Tymbakion was the best site and Ioannina the worst. From the environmental point of view, it was found that on an average an approximate quantity of 1.47 ton of green house gases can be avoided entering into the local atmosphere each year.DOI: http://dx.doi.org/10.5755/j01.ee.23.1.1222


Sign in / Sign up

Export Citation Format

Share Document