Land Use/Land Cover Dynamic Monitoring and Analysis Using Remote Sensing and GIS Techniques: Case Study of Qingpu District, Shanghai

2012 ◽  
Vol 518-523 ◽  
pp. 5704-5709
Author(s):  
Yi Lin ◽  
Bing Liu ◽  
Feng Xie ◽  
Wen Wei Ren

This paper illustrates almost twenty years (1986~2007) of Land use/land cover change (LULCC) in Qingpu-one district of Shanghai. Qingpu District is an area of Upper Huangpu Catchment for fresh water supply with considerable ecological value, but it is also experiencing urban sprawl from development. To reveal the trends underlie LULCC, we propose a novel procedure to quantify different land use/land covers and implement it in the case study. In this procedure, we first collect historical remote-sensing data and co-registered or corrected them to the same spatial resolution and radioactive level. Based upon preliminary interpretation or investigation, land use/land cover types in study area can be included in 5 categories, i.e. Water, Agricultural Land, Urban or Built-up Land, Forest Land, and Barren Land or others. Moreover, data is clipped via boundary of study area for reducing computation load, followed by FPCR-ISODATA classification to divide the data into k groups (k>the number of land types). After postprocessing, e.g., merge the same connoted subgroups and correct misclassified units accompany with validation and verification, the detailed land use/land cover results can be achieved accurately. The quantitative and regression analysis indicate that during the past twenty years the area of agricultural land of Qingpu decreased coupled with urban or built-up area increased linearly. The water area had the minimum change during the decades. Forests had the smallest average proportion (9.6%) of the total area. It occupied so small proportion of land that we can only find points of it in the maps. Barren land can be an indicator for monitoring uncompleted redevelopment or transition of land.

2019 ◽  
Vol 4 (6) ◽  
pp. 84-89 ◽  
Author(s):  
Aniekan Effiong Eyoh ◽  
Akwaowo Ekpa

The research was aim at assessing the change in the Built-up Index of Uyo metropolis and its environs from 1986 to 2018, using remote sensing data. To achieve this, a quantitative analysis of changes in land use/land cover within the study area was undertaken using remote sensing dataset of Landsat TM, ETM+ and OLI sensor images of 1986, 2000 and 2018 respectively. Supervised classification, using the maximum likelihood algorithm, was used to classify the study area into four major land use/land cover types; built-up land, bare land/agricultural land, primary swamp vegetation and secondary vegetation. Image processing was carried out using ERDAS IMAGINE and ArcGIS software. The Normalised Difference Built-up Index (NDBI) was calculated to obtain the built-up index for the study area in 1986, 2000 and 2018 as -0.20 to +0.45, -0.13 to +0.55 and -0.19 to +0.63 respectively. The result of the quantitative analysis of changes in land use/land cover indicated that Built-up Land had been on a constant and steady positive growth from 6.76% in 1986 to 11.29% in 2000 and 44.04% in 2018.


Author(s):  
S. Ravichandran ◽  
I. K. Manonmani

Land use / Land cover change is one of the most sensitive factors that show the interactions between human activities and the ecological environment. This research study demonstrated the importance of geographical information system and remote sensing technologies in spatial temporal data analysis and also this paper shows a GIS and remote sensing approach for modeling of spatial - temporal pattern of land use and land cover change (LULC) in a fastest growing towns / industrial region of Karur town. QGIS 3.10 version and Arc GIS 10.2 software platforms were utilized in the study for Image processing, LULC mapping and change detection analysis. USGS Earth explorer Landsat series satellite imageries were acquired and LULC maps were prepared for the years 1991, 2000, 2010 and 2020. Supervised classification with maximum likelihood algorithm is adopted for LULC classification. The LULC classes are Built upland, Agricultural land, Barren land and Water body based on NRSA Level – I supervised classification. The Built-up area has drastically increased from 1991 to 2020. It has increased more than double. It was 17 percent in 1991 and increased to 40 percent in 2020. This clearly shows Karur town is the becoming more and more urbanized.


Author(s):  
B. Varpe Shriniwas D. Payal Sandip

In the present study, an effort has been made to study in detail of Land Use/Land Cover Mapping for Sambar watershed by using Remote Sensing and GIS technique was carried out during the year of 2020-2021 in Parbhani district. In this research the Remote Sensing and Geographical Information system technique was used for identifying the land use/land cover classes with the help of ArcGIS 10.8 software. The Sambar watershed is located in 19º35ʹ78.78˝ N and 76º87ʹ88.44˝ E in the Parbhani district of Marathwada region in Maharashtra. It is covered a total area 97.01 km2. The land use/land cover map and its classes were identified by the Supervised Classification Method in ArcGIS 10.8 software by using the Landsat 8 satellite image. Total six classes are identified namely as Agricultural area, Forest area, Urban area, Barren land, Water bodies and Fallow land. The Agricultural lands are well distributed throughout the watershed area and it covers 4135 ha. (43 per cent). Forest occupies 502 ha area and sharing about 5 per cent of the total land use land cover of the study area. The Urban land occupies 390 ha. area (4 per cent) and there was a rapid expansion of settlement area. Barren land occupies 3392 ha. area (35 per cent). A water bodies occupy 630 ha. area (6 per cent) and the Fallow land occupies 650 ha (7 per cent) but well-developed dendritic drainage pattern and good water availability is in the Sambar watershed.


2021 ◽  
Vol 13 (16) ◽  
pp. 3337
Author(s):  
Shaker Ul Din ◽  
Hugo Wai Leung Mak

Land-use/land cover change (LUCC) is an important problem in developing and under-developing countries with regard to global climatic changes and urban morphological distribution. Since the 1900s, urbanization has become an underlying cause of LUCC, and more than 55% of the world’s population resides in cities. The speedy growth, development and expansion of urban centers, rapid inhabitant’s growth, land insufficiency, the necessity for more manufacture, advancement of technologies remain among the several drivers of LUCC around the globe at present. In this study, the urban expansion or sprawl, together with spatial dynamics of Hyderabad, Pakistan over the last four decades were investigated and reviewed, based on remotely sensed Landsat images from 1979 to 2020. In particular, radiometric and atmospheric corrections were applied to these raw images, then the Gaussian-based Radial Basis Function (RBF) kernel was used for training, within the 10-fold support vector machine (SVM) supervised classification framework. After spatial LUCC maps were retrieved, different metrics like Producer’s Accuracy (PA), User’s Accuracy (UA) and KAPPA coefficient (KC) were adopted for spatial accuracy assessment to ensure the reliability of the proposed satellite-based retrieval mechanism. Landsat-derived results showed that there was an increase in the amount of built-up area and a decrease in vegetation and agricultural lands. Built-up area in 1979 only covered 30.69% of the total area, while it has increased and reached 65.04% after four decades. In contrast, continuous reduction of agricultural land, vegetation, waterbody, and barren land was observed. Overall, throughout the four-decade period, the portions of agricultural land, vegetation, waterbody, and barren land have decreased by 13.74%, 46.41%, 49.64% and 85.27%, respectively. These remotely observed changes highlight and symbolize the spatial characteristics of “rural to urban transition” and socioeconomic development within a modernized city, Hyderabad, which open new windows for detecting potential land-use changes and laying down feasible future urban development and planning strategies.


2021 ◽  
Vol 16 (2) ◽  
pp. 335-345
Author(s):  
Dancan Otieno Onyango ◽  
Christopher O. Ikporukpo ◽  
John O. Taiwo ◽  
Stephen B. Opiyo

The socio-economic and ecological value of Lake Victoria is threatened by significant regional development and urbanization. This study analyzed spatial-temporal land use/land cover changes in the Kenyan Lake Victoria basin from 1978–2018 using Landsat 3, 4-5 and 8 imagery, with a view to identifying the extent and potential impacts of urbanization on the basin. Supervised image classification was undertaken following the Maximum Likelihood algorithm to generate land use/land cover maps at ten-year intervals. Results indicate that the basin is characterized by six main land use/land cover classes namely, agricultural land, water bodies, grasslands and vegetation, bare land, forests and built-up areas. Further, the results indicate that the basin has experienced net increases in built-up areas (+97.56%), forests (+17.30%) and agricultural land (+3.54%) over the last 40 years. During the same period, it experienced net losses in grassland and vegetation (-37.36%), bare land (-9.28%) and water bodies (-2.19%). Generally, the changing landscapes in the basin are characterized by conversion of natural environments to built-up environments and driven by human activities, urban populations and public policy decisions. The study therefore recommends the establishment of a land use system that creates a balance between the ecological realm and sustainable development.


2020 ◽  
Vol 10 (8) ◽  
pp. 2928 ◽  
Author(s):  
Rui Zhang ◽  
Xinming Tang ◽  
Shucheng You ◽  
Kaifeng Duan ◽  
Haiyan Xiang ◽  
...  

Remote sensing data plays an important role in classifying land use/land cover (LULC) information from various sensors having different spectral, spatial and temporal resolutions. The fusion of an optical image and a synthetic aperture radar (SAR) image is significant for the study of LULC change and simulation in cloudy mountain areas. This paper proposes a novel feature-level fusion framework, in which the Landsat operational land imager (OLI) images with different cloud covers, and a fully polarized Advanced Land Observing Satellite-2 (ALOS-2) image are selected to conduct LULC classification experiments. We take the karst mountain in Chongqing as a study area, following which the features of the spectrum, texture, and space of the optical and SAR images are extracted, respectively, supplemented by the normalized difference vegetation index (NDVI), elevation, slope and other relevant information. Furthermore, the fused feature image is subjected to object-oriented multi-scale segmentation, subsequently, an improved support vector machine (SVM) model is used to conduct the experiment. The results showed that the proposed framework has the advantages of multi-source data feature fusion, high classification performance and can be applied in mountain areas. The overall accuracy (OA) was more than 85%, with the Kappa coefficient values of 0.845. In terms of forest, gardenland, water, and artificial surfaces, the precision of fusion image was higher compared to single data source. In addition, ALOS-2 data have a comparative advantage in the extraction of shrubland, water, and artificial surfaces. This work aims to provide a reference for selecting the suitable data and methods for LULC classification in cloudy mountain areas. When in cloudy mountain areas, the fusion features of images should be preferred, during the period of low cloudiness, the Landsat OLI data should be selected, when no optical remote sensing data are available, and the fully polarized ALOS-2 data are an appropriate substitute.


Sign in / Sign up

Export Citation Format

Share Document