UV Induced Degradation of Crude Oil in Polluted Water Based on Analysis of Environmental Materials

2012 ◽  
Vol 534 ◽  
pp. 333-336 ◽  
Author(s):  
Hui Liu ◽  
Bing Sun ◽  
Zhi Yu Yan ◽  
Xiao Yu Tian

Analysis of environmental materials is very important for the environmental assessment, especially for the crude oil-contaminated water. This paper investigated the degradation of crude oil in the polluted water under the irradiation of UV light, and used the UV absorption, synchronous fluorescence spectra and gas chromatograph to analysis the changes of the environmental materials in the crude oil polluted water during the irradiation. All of the absorbance substances, fluorescent substances and saturated hydrocarbons in the crude oil polluted water decreased with the UV light irradiation. In addition, the dissolved organic matters in the seawater had significant influence on the photodegradation of crude oil.

2020 ◽  
Vol 18 (3) ◽  
pp. 581-588
Author(s):  
Kieu Thi Quynh Hoa ◽  
Nguyen Vu Giang ◽  
Nguyen Thi Yen ◽  
Mai Duc Huynh ◽  
Nguyen Huu Dat ◽  
...  

During the production and transportation of petroleum hydrocarbons, unsuitable operation and leakage may result in contamination of water and soil with petroleum hydrocarbons. Petroleum contamination causes significant marine environmental impacts and presents substantial hazards to human health. Bioremediation of contaminated water and soil is currently the effective and least harmful method of removing petroleum hydrocarbons from the environment. To improve the survival and retention of the bioremediation agents in the contaminated sites, microbial cells must be immobilized. It was demonstrated that immobilized microbial cells present advantages for degrading petroleum hydrocarbon pollutants compared to free suspended cells. In this study, the ability of a Bacillus strain (designed as Bacillus sp. VTVK15) to immobilize on PUF and to degrade crude oil was investigated.  The immobilized Bacilllus strain had the highest number (5.38 ± 0.12 Í 108 CFU/g PUF) and a maximum attachment efficiency of 92% on PUF after 8 days. Analysis by GC-MS revealed that both free and immobilized cells of Bacillus sp. VTVK15 were able to degrade 65 and 90% of the hydrocarbons in 2% (v/v) crude oil tested after 14 days, respectively. The results suggest the potential of using PUF-immobilized Bacillus sp. VTVK15 to bioremediate petroleum hydrocarbons in an open marine environment.


2020 ◽  
Vol 50 (1) ◽  
Author(s):  
Emilia Baszanowska ◽  
Zbigniew Otremba

The development of petroleum extraction and transport technology does not ensure complete isolation of these substances from the natural environment. This problem is exacerbated by the location of mining equipment on the sea shelf and the fact that numerous submarine pipelines, tankers and handling terminals can also emit oil pollution. Therefore, the possibility of detecting oil dispersed in the water is particularly important. This paper reports the efforts to identify methods of characterization of the water containing the crude oil emulsion in a very low concentration (a few to several tens of ppm). Due to this, the effect of emulsion concentration on the possibility of its objective characterization using synchronous fluorescence spectra was studied. The similarity of spectra at various oil concentrations was analysed. It has been shown that the stabilization of the shape of synchronous fluorescence spectra occurs at relatively low oil concentrations.


2020 ◽  
Vol 75 (8) ◽  
pp. 727-732
Author(s):  
Chen Zhang ◽  
Jian-Qing Tao

AbstractA new Cu(II) metal-organic framework, [Cu(L)(OBA)·H2O]n (1) [H2OBA = 4,4′-oxybis(benzoic acid), L = 3,5-di(1H-benzimidazol-1-yl)pyridine] was hydrothermally synthesized and characterized through IR spectroscopy, elemental and thermal analysis and single-crystal X-ray diffraction. Complex 1 is a four-connected uni-nodal 2D net with a (44·62) topology which shows an emission centered at λ ∼393 nm upon excitation at λ = 245 nm. Moreover, complex 1 possesses high photocatalytic activities for the decomposition of Rhodamine B (RhB) under UV light irradiation.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1622
Author(s):  
Xiao-Pin Guo ◽  
Peng Zang ◽  
Yong-Mei Li ◽  
Dong-Su Bi

2-methylisoborneol (2-MIB) is a common taste and odor compound caused by off-flavor secondary metabolites, which represents one of the greatest challenges for drinking water utilities worldwide. A TiO2-coated activated carbon (TiO2/PAC) has been synthesized using the sol-gel method. A new TiO2/PAC photocatalyst has been successfully employed in photodegradation of 2-MIB under UV light irradiation. In addition, the combined results of XRD, SEM-EDX, FTIR and UV-Vis suggested that the nano-TiO2 had been successfully loaded on the surface of PAC. Experimental results of 2-MIB removal indicated that the adsorption capacities of PAC for 2-MIB were higher than that of TiO2/PAC. However, in the natural organic matter (NOM) bearing water, the removal efficiency of 2-MIB by TiO2/PAC and PAC were 97.8% and 65.4%, respectively, under UV light irradiation. Moreover, it was shown that the presence of NOMs had a distinct effect on the removal of MIB by TiO2/PAC and PAC. In addition, a simplified equivalent background compound (SEBC) model could not only be used to describe the competitive adsorption of MIB and NOM, but also represent the photocatalytic process. In comparison to other related studies, there are a few novel composite photocatalysts that could efficiently and rapidly remove MIB by the combination of adsorption and photocatalysis.


2021 ◽  
Vol 553 ◽  
pp. 149535
Author(s):  
Elisa Moretti ◽  
Elti Cattaruzza ◽  
Cristina Flora ◽  
Aldo Talon ◽  
Eugenio Casini ◽  
...  

2021 ◽  
Author(s):  
Yumei Mao ◽  
Xuehua Dong ◽  
Yuandan Deng ◽  
Jing Li ◽  
Ling Huang ◽  
...  

Two new zinc phosphites were prepared using the amino acid alanine as structure-directing agent. They have tubular and ladder-like structures exhibiting blue fluorescence upon UV light irradiation. Notably, the tubular...


1996 ◽  
Vol 54 (4) ◽  
pp. 331-337 ◽  
Author(s):  
M.Perla Colombini ◽  
Fabio Di Francesco ◽  
Roger Fuoco

Sign in / Sign up

Export Citation Format

Share Document