Preparation of Rigid Flame Retardancy Polyurethane Foam Material with Difficult Combusted Degree

2012 ◽  
Vol 535-537 ◽  
pp. 1151-1157
Author(s):  
Zhen Hui Qiu ◽  
Yuan Bao Sun ◽  
Zhan He Du

The flame retardants used for the rigid PU foam material were studied systematically in this paper and a series of experiments were carried out to test the oxygen index (OI) of it. The synergistic effect in the different flame retardants also be verified to achieve a well flame retardancy performance. The best ingredients were found out by an orthogonal experiment which can give the PU foam maeterial a difficult combusted degree with the oxygen index higher than 34.

Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4509
Author(s):  
Yangwei Tan ◽  
Zhaoyi He ◽  
Xiang Li ◽  
Bin Jiang ◽  
Jiaqi Li ◽  
...  

The inflammability of asphalt road will promote fire spread in the tunnel and produce lots of toxic smoke. To improve the fire resistance of asphalt pavement, mineral powder flame retardants are generally replaced by flame retardants in equal amounts. In this study, the effects of the synergistic flame retardancy system of halloysite nanotubes (HNTs) and conventional flame retardants (CFR) on the flame retardancy performance and mechanism of asphalt were investigated. Firstly, the flame retardancy properties of the HNTs and CFR composite modified asphalt were investigated based on the Cleveland open cup method (COC), Limiting oxygen index meter (LOI), and Cone calorimeter tests (CCTs). Then, the flame retardancy mechanism of the modified asphalt was studied based on Thermogravimetric analyzer (TGA), Fourier-transform infrared (FTIR), and Scanning electron microscopy (SEM). The results show that adding HNTs could improve the flame retardancy of the CFR modified asphalt binder. When 1 wt % HNTs and 8 wt % CFR were used, the limiting oxygen index of asphalt increased by 40.1%, the ignition temperature increased by 40 °C, while the heat release rate, total heat release, the smoke production rate, total smoke release, and other parameters decreased with varying degrees. Based on TG, FTIR, and SEM, the targeted flame retardancy mechanism and synergistic effect of HNTs/CFR flame retardancy system were revealed and summarized as three stages: (1) Stage 1, aluminum hydroxide (ATH) absorbs heat through thermal decomposition and inhibits the decomposition of lightweight components in asphalt; (2) Stage 2, aluminum diethyl phosphate (ADP) decomposes and produces organic phosphoric acid, which catalyzes crosslinking and ring thickening of asphalt and the quenching effect of phosphorus free radicals to block the combustion; and (3) Stage 3, HNTs plays an important role in increasing the integrity and density of the barrier layer. In addition, the Al2O3 produced by the decomposition of ATH, the carbon layer formed by the ADP catalyzed pitch, and HNTs play a significant synergistic effect in the formation of the barrier layer. Thus, the combination of HNTs and CFR has been proved to be a prospective flame retardancy system for asphalt.


2021 ◽  
Vol 19 (1) ◽  
pp. 904-915
Author(s):  
Merve Kahraman ◽  
Nilgün Kızılcan ◽  
Mehmet Ali Oral

Abstract In many plastic applications, improvement of the flame retardancy is a very significant topic. Polypropylene (PP) is used in many applications such as housing industry due to its cost performance efficiency. Enhancement of flame retardancy properties of PP is necessary in many applications. In this study, the investigation focuses on the synergistic effect of mica mineral and IFR in enhancing the flame retardancy properties of PP in order to achieve cost competitive solution, so as to provide that different/various ratios of IFR and mica mineral were added into PP to compose 30 wt% of the total mass of the polymeric compounds. The synergistic effect of mica mineral with IFR in PP was investigated by limiting oxygen index (LOI), glow wire test (GWT), UL-94 test, thermal gravimetric analyses (TGA), and mechanical tests. The results from LOI, UL 94, and GWT tests indicated that mica added to PP/IFR compound has a synergistic flame retardancy effects with the IFR system. When the content of mica was 6 wt%, LOI value of PP compound reaches to 34.9% and becomes V-0 rating (3.2 mm) in UL 94 flammability tests and compounds pass GWT tests both at 750 and 850°C.


1993 ◽  
Vol 11 (5) ◽  
pp. 442-456 ◽  
Author(s):  
Jun Zhang ◽  
Michael E. Hall ◽  
A. Richard Horrocks

This paper is the first in a series of four which investigates the burning behaviour and the influence of flame retardant species on the flam mability of fibre-forming polymer and copolymers of acrylonitrile. A pressed powdered polymer sheet technique is described that enables a range of polymer compositions in the presence and absence of flame retardants to be assessed for limiting oxygen index, burning rate and char residue deter minations. The method offers a rapid, reproducible and convenient means of screening possible flame retardant systems, and LOI values compare favourably with those of films and fabrics comprising the same polymeric type. Burning rates, however, are sensitive to changes in physical sample character such as form (film vs. powder sheet) and density. Thus the technique forms an excellent basis for the generation of burning data which will enable comprehensive studies of acrylic polymer flammability and flame retardancy to be undertaken.


RSC Advances ◽  
2020 ◽  
Vol 10 (20) ◽  
pp. 12078-12088
Author(s):  
Hui Wang ◽  
Xiaosheng Du ◽  
Shuang Wang ◽  
Zongliang Du ◽  
Haibo Wang ◽  
...  

A novel reactive intumescent fire retardant hexa-[4-[(2-hydroxy-ethylimino)-methyl]-phenoxyl]-cyclotriphosphazene (HEPCP), containing both cyclotriphosphazene and Schiff base structures, is successfully prepared.


2020 ◽  
Vol 38 (3) ◽  
pp. 235-252
Author(s):  
Zhaojun Lin ◽  
Qianqiong Zhao ◽  
Ruilan Fan ◽  
Xiaoxue Yuan ◽  
Fuli Tian

In this work, a halogen-free intumescent combining phosphorus and nitrogen, flame-retardant 2-((2-hydroxyphenyl)(phenylamino)methyl5,5-dimethyl-1,3,2-dioxaphosphinane 2-oxide (HAPO) was successfully synthesized. It had been synthesized by reaction of 5,5-dimethyl-1,3, 2-dioxphosphinane 2-oxide with Schiff base. Its chemical structure was characterized in detail by Fourier transform infrared spectroscopy, 1H NMR, and 31P NMR spectrum. The flame-retardant polyurethanes were prepared with different loadings of HAPO. The thermal properties, flame retardancy and combustion behavior of the pure polyurethane foam thermosets were investigated by a series of measurements involving thermogravimetric analysis, limited oxygen index measurement, UL-94 vertical burning test, and cone calorimeter test. The results of the aforementioned tests indicated that HAPO can significantly improve the flame retardancy as well as smoke inhibition performance of polyurethane foam. Compared with the PU-Neat, the limited oxygen index of flame-retardant polyurethanes (15%) thermoset was increased from 19.5% to 23.8% and its UL-94 reached V-0 rating. In addition, the cone test results showed that the heat release rate, total heat release, rate of smoke release, and total smoke production of flame-retardant polyurethanes (10%) were decreased obvious sly. The apparent morphology of carbon residue was characterized by scanning electron microscopy, and results revealed that the modified polyurethane foam can form dense carbon layer after combustion. Thermogravimetric analysis results also indicated that the char amount of flame-retardant polyurethanes was obviously increased compared with PU-Neat. Based on the above analysis, we can draw the conclusions which in the condensed phase, phosphorus-based acids from the degradation of HAPO, this could promote the formation of continuous and dense phosphorus-rich carbon layer. In the gas phase, the flame-retardant mechanism was ascribed to the quenching effect of phosphorus-based radicals and diluting effect by non-flammable gases.


2018 ◽  
Vol 36 (6) ◽  
pp. 535-545 ◽  
Author(s):  
Daikun Jia ◽  
Yi Tong ◽  
Jin Hu

Flame-retardant rigid polyurethane foams incorporating N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol have been prepared. After adding N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol, the density and compressive strength of the polyurethane foams were seen to decrease. The flame retardancy of the polyurethane foams has been characterized by limiting oxygen index, upper limit–94, and cone calorimeter tests. The polyurethane foam with 2.27 wt% N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol gave a highest limiting oxygen index of 33.4%, and the peak heat release rate of polyurethane foam reduced to 19.5 kW/m2 from 47.6 kW/m2 of PU-0 without N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol. Upper limit–94 revealed N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol did not change the burning rating, and all polyurethane foams had passed V-0 rating. The thermal stability of polyurethane foams has been investigated by thermogravimetric analyzer. N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol significantly increased the initial decomposition temperature of polyurethane foams and their residues. In addition, the morphology of residual char from the flame-retarded polyurethane foams after cone calorimeter tests has also been characterized by digital photographs. The results indicated that N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol significantly enhanced the strength and compatibility of the char layer formed by the polyurethane foams. These results indicate that N,N-(pyromellitoyl)-bis-l-phenylalanine diacid ester glycol can improve both the quality and quantity of the char, which has a significant effect on the flame-retardant properties of the foam.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Bo Li ◽  
Jianxun Liu ◽  
Feng Han ◽  
Xiaoling Li ◽  
Liangying Li ◽  
...  

Improving the compatibility between flame retardant and asphalt is a difficult task due to the complex nature of the materials. This study explores a low dosage compound flame retardant and seeks to improve the compatibility between flame retardants and asphalt. An orthogonal experiment was designed taking magnesium hydroxide, ammonium polyphosphate, and melamine as factors. The oil absorption and activation index were tested to determine the effect of titanate on the flame retardant additive. The pavement performance test was conducted to evaluate the effect of the flame retardant additive. Oxygen index test was conducted to confirm the effect of flame retardant on flame ability of asphalt binder. The results of this study showed that the new composite flame retardant is more effective in improving the compatibility between flame retardant and asphalt and reducing the limiting oxygen index of asphalt binder tested in this study.


Sign in / Sign up

Export Citation Format

Share Document