Application of Fuzzy Controller with Self-Tuning Scaling Factors for the Filling System of Counter-Gravity Casting

2012 ◽  
Vol 538-541 ◽  
pp. 1122-1129
Author(s):  
Qiang Li ◽  
Qi Tang Hao ◽  
Wan Qi Jie

Pressurization control system plays an important role in the process control at the stages of riser-tube filling, mold-filling, pressure-increasing and pressure maintaining in counter-gravity casting. Casting quality is affected by the precision of pressurization control system to a great extent. Input and output scaling factors of conventional fuzzy controller are static, which is hard to ensure a suitable state for various counter-gravity casting equipments. A new fuzzy controller with self-tuning scaling factors has been developed in our laboratory, which will be described in this paper. Input and output scaling factors of fuzzy controller are tuned by different error ranges. When the differential pressure error is large, output scaling factor is increased to speed up dynamic response. At the same time, input scaling factors are also increased in order to reduce steady state error. Compared to fuzzy controller and conventional PID controller, fuzzy-PID controller with self-tuning scaling factors has more steady-state precision and excellent robustness. Experimental results show that at riser-tube filling stage and mold-filling stage the gas flow is stable, and the tracking property of pressurization control system is very satisfactory.

2010 ◽  
Vol 97-101 ◽  
pp. 2995-3000
Author(s):  
Chun Ping Cao ◽  
Yu Sun

Blank-holder Force (BHF) control technology is an important guarantee for the quality of parts forming. Taking YJ28E—1000/1600Q hydraulic press as object, a hydraulic fuzzy control model based on self-tuning fuzzy-PID is built to deal with the undesirable dynamic response and the low steady-state precision of the hydraulic control system. The look-up table for optimal control parameters is generated from MATLAB Toolbox. A simulation study of the system shows that the dynamic response and steady-state precision is improved greatly by adopting this kind of self-adaptive fuzzy-PID controller.


2013 ◽  
Vol 310 ◽  
pp. 518-523
Author(s):  
Zhi Qiang Chao ◽  
Xin Ze Li ◽  
Ai Hong Meng

In recent years, hydraulic simulation has become an important means to research hydraulic system, in order to enable the single degree platform vibration curve with better traceability and reach the requirement of the test, this paper represent single degree system platform stimulated by simulation software AMESim, taking the Single degree freedom vibration hydraulic system as an example, MATlab/simulink is applied to the design of the vibration platform system fuzzy PID controller. Through the comparison between the simulation test and traditional PID controller, the designed self-tuning fuzzy controller can control the platform better, with smaller overshoot, faster response, shorter adjusting time, as well as fulfill the permissible accuracy.


2013 ◽  
Vol 432 ◽  
pp. 472-477
Author(s):  
Wei Fan ◽  
Tao Chen

This paper presents a robust fuzzy proportional-integral-derivative (PID) controller for brushless DC motor (BLDCM) control system. The hardware circuit of the BLDCM control system is designed and implemented using a digital signal processor (DSP) TMS320LF2407A and a monolithic BLDCM controller MC33035 as the core. Furthermore, a fuzzy PID controller, which combines the advantages of good robustness of fuzzy controller and high precision of conventional PID controller, is employed in the hardware system, thereby yielding a digital, intelligent BLDCM control system. Experimental results have shown that the control system can run steadily and control accurately, and have convincingly demonstrated the usefulness of the proposed fuzzy PID controller in BLDCM control system.


2013 ◽  
Vol 341-342 ◽  
pp. 892-895
Author(s):  
Jun Chao Zhang ◽  
Shao Hong Jing

The introduction of the AQC boiler has complex effects on the temperature of Tertiary air, traditional PID is difficult to achieve the effective control. Combined the method of the conventional PID with the fuzzy control theory, a fuzzy self-tuning PID controller is designed. Compared with traditional PID, results of simulation show that the fuzzy PID controller improves not only the adaptability and robustness of the system, but also the system's static and dynamic performance.


2011 ◽  
Vol 383-390 ◽  
pp. 7345-7350
Author(s):  
Zhi Yong Tang ◽  
Hai Xiao Zhong ◽  
Zhong Cai Pei ◽  
Yan Hao Bu

In this paper, we propose a mechanical structure for multi-legged robot. Referring the request of control system, we also made a proper choice on driving means. After dynamics analysis on a single leg of the robot, we make a simulation using ADAMS and get how the torque of each joint is changing when the robot is walking. The model of DC motor is established for the control system. Fuzzy PID controller was used to get real-time response and high accuracy of control system.


2013 ◽  
Vol 345 ◽  
pp. 99-103 ◽  
Author(s):  
Yong Qing Chen ◽  
Xin He Xu ◽  
Hua Ling Zhu ◽  
Shi De Ye ◽  
Liang Tao Li

Based on the MATLAB/SimHydraulics toolbox, an automatic leveling system controlled by electro-hydraulic proportional valve was simulated and researched. With the help of Hydraulic components models in the SimHydraulics toolbox, the SimHydraulics Physical Network simulation and the Simulink control system simulation was integrated used, and the Simulink modules powerful numerical processing capability helped to improve the efficiency and accuracy of the system design. The simulation results showed that:The use of SimHydraulics toolbox on the simulation study of automatic leveling system controlled by electro-hydraulic proportional valve is feasible; The adjustment time of the automatic leveling system is short and the steady-state accuracy is high based on the PID controller.


Sign in / Sign up

Export Citation Format

Share Document