Non-Grid-Connected Wind Power DC Network Study Based on Hybrid Convertor

2012 ◽  
Vol 546-547 ◽  
pp. 295-300
Author(s):  
Hui Fang Liu

Applying non-grid-connected wind power to high energy consuming industry has broad development prospects. This paper presents a compound DC power transmission net to realize high efficiency and reduce the loss. This net consists of current source converter (CSC) based on naturally commutated thyristor and voltage source converter (VSC) based on IGBT. Super capacitor connected to the load side stabilizes the wind power fluctuation. The coordinated control strategy of wind power, energy storage device and load is provided. Simulation results based on real wind power shows the validity of the system.

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 560
Author(s):  
Juanjuan Sun ◽  
Hui Wang ◽  
Xiaomin Zhu ◽  
Qian Pu

When the power source of a voltage source converter (VSC) station at the sending end solely depends on wind power generation, the station is operating in an islanding mode. In this case, the power fluctuation of the wind power will be entirely transmitted to the receiving-end grid. A self-regulation scheme of power fluctuation is proposed in this paper to solve this problem. Firstly, we investigated the short-time variability characteristic of the wind power in a multi-terminal direct-current (MTDC) project in China. Then we designed a virtual frequency (VF) control strategy at the VSC station based on the common constant voltage constant frequency (CVCF) control of VSC station. By cooperating with the primary frequency regulation (PFR) control at the wind farms, the self-regulation of active power pooling at the VSC station was realized. The control parameters of VF and PFR control were carefully settled through the steady-state analysis of the MTDC grid. The self-regulation effect had been demonstrated by a twenty-four-hour simulation. The results showed that the proposed scheme could effectively smoothen the power fluctuation.


2016 ◽  
Vol 10 (1) ◽  
pp. 156-165
Author(s):  
Wu Jiahui ◽  
Wang Haiyun ◽  
Wang Weiqing ◽  
Zhang Qiang

This paper evaluates application feasibility of a Hybrid Multi-terminal HVDC system and wind-thermal-bundled plants simulated in DIgSLIENT PowerFactory environment. The proposed hybrid MTDC system consists of two line-communicated converters (LCC), which are connected to both wind farms and thermal power plants, and one voltage source converter (VSC) at the grid side. Control strategies for each converter are designed to handle this system under different disturbance conditions. Simulation results show that the wind power fluctuation can be compensated by the thermal-generated power. Results demonstrate the effectiveness of the proposed control strategies of the hybrid MTDC system compared to a conventional MTDC system. The proposed scheme combines advantages of both LCC and VSC HVDC systems and provides a new way to transmit wind power over long distances to the main grid.


Author(s):  
Sarika D. Patil

Recently the wind power generation has attracted special interest and many wind power stations are being in service in the world. In the wind turbine that mostly uses induction generators, tend to drain large amounts of Vars from the grid, potentially causing low voltage and may be voltage stability problems for the utility owner, especially in the case of large load variation on distribution feeder. Voltage-source converter based various FACTS devices have been used for flexible power flow control, secure loading and damping of power system oscillations. Some of those are used also to improve transient and dynamic stability of the wind power generation (WPGS).


2011 ◽  
Vol 55-57 ◽  
pp. 1361-1364
Author(s):  
Jun Li Zhang ◽  
Xiao Feng Lv ◽  
Chao Li

With the growth of industry manufacturers and population, power quality becomes more and more important issue, and is attracting significant attention due to the increase in the number of sensitive loads. A distribution static compensator (DSTATCOM) is a voltage source inverter (VS1)-based power electronic device, which is usually used to compensate reactive power and sustain the system voltage in distribution power system. Compared with the traditional STATCOM, multilevel STATCOMs exhibit faster dynamic response, smaller volume, lower cost, and higher ratings. A multilevel inverter connected to an energy storage device can control both active and reactive power flow, providing more flexible and versatile power transmission operation. SPWM is actually a kind of multi-pulse trigger mode and used to trigger the switches in DSTATCOM.


2020 ◽  
Vol 11 (2) ◽  
pp. 37 ◽  
Author(s):  
Daouda Mande ◽  
João Pedro Trovão ◽  
Minh Cao Ta

Power electronics play a fundamental role for electric transportation, renewable energy conversion and many other industrial applications. They have the ability to help achieve high efficiency and performance in power systems. However, traditional inverters such as voltage source and current source inverters present some limitations. Consequently, many research efforts have been focused on developing new power electronics converters suitable for many applications. Compared with the conventional two-stage inverter, Z-source inverter (ZSI) is a single-stage converter with lower design cost and high efficiency. It is a power electronics circuit of which the function is to convert DC input voltage to a symmetrical AC output voltage of desired magnitude and frequency. Recently, ZSIs have been widely used as a replacement for conventional two-stage inverters in the distributed generation systems. Several modifications have been carried out on ZSI to improve its performance and efficiency. This paper reviews the-state-of-art impedance source inverter main topologies and points out their applications for multisource electric vehicles. A concise review of main existing topologies is presented. The basic structural differences, advantages and limitations of each topology are illustrated. From this state-of-the-art review of impedance source inverters, the embedded quasi-Z-source inverter presents one of the promising architectures which can be used in multisource electric vehicles, with better performance and reliability. The utilization of this new topology will open the door to several development axes, with great impact on electric vehicles (EVs).


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8347
Author(s):  
Sivakrishna Karpana ◽  
Efstratios Batzelis ◽  
Suman Maiti ◽  
Chandan Chakraborty

Owing to rapid increase in PV penetration without inherent inertia, there has been an unremitting deterioration of the effective inertia of the existing power systems. This may pose a serious threat to the stability of power systems during disturbances if not taken care of. Hence, the problem of how to emulate Synthetic Inertia (SI) in PV Systems (PVS) to retain their frequency stability demands attention. Super Capacitor (SC)-based storage become an attractive option over the other energy storage types because of its high-power density, burst power handling capability, faster response and longer life cycle. Considering this, the authors here propose a novel PV-SC Cascaded Topology (PSCT) as a cost-effective approach to emulate SI by integrating a low voltage SC to a high voltage grid-connected PVS. The proposed PSCT helps in operating the SC as a voltage source rather than a current source. Thus, it eliminates the high gain requirements of the SC interfacing converters. The aim is to target two main frequency response services, i.e., Primary Frequency Response (PFR) and Synthetic Inertial Response (SIR), using a novel common control scheme, but without affecting any other energy intensive services. The authors introduced a Droop-Inspired (DI) method with an adjustable inertia constant to emulate dynamic inertia so that a wider range of Rate of Change of Frequency (RoCoF) values can be serviced with a limited storage. A very streamlined analysis was also carried out for sizing of the SC stage based on a simple Three-Point Linearization (TPL) technique and DI technique with a limited knowledge of the disturbance parameters. The whole system was initially validated in a MATLAB Simulink environment and later confirmed with the OPAL-RT Real-Time Simulator. The investigated response was subject to variation in terms of control parameters, changes in solar irradiance, grid frequency variation, etc.


2018 ◽  
Vol 146 ◽  
pp. 186-199 ◽  
Author(s):  
S. Añó-Villalba ◽  
R. Blasco-Gimenez ◽  
S. Bernal-Perez ◽  
E. Belenguer

Sign in / Sign up

Export Citation Format

Share Document