Study on Artificial Regulation of Water Resources in West of Daqing City

2012 ◽  
Vol 550-553 ◽  
pp. 2510-2514
Author(s):  
Chun Yan Zhang ◽  
Long Cang Shu ◽  
Bo Liu ◽  
Emmanuel Kwame Appiah-Adjei ◽  
Su Li ◽  
...  

Since the development and construction of Daqing City, groundwater resource has been their main water supply source. However, over-exploitation of the groundwater is causing a series of environmental and geological problems. Thus it is essential to ensure sustainable development of groundwater and control the worsening of groundwater related environmental problems in the City. Practical scenarios of groundwater recovery based on several different water resources artificial regulation scenarios are designed to reduce exploitation after the completion of water diversion from Nen River Expansion Project. These scenarios include three different exploitation reducing scenarios and scenarios of artificial recharge based on reducing exploitation. The simulation results of Visual Modflow indicate that both reducing exploitation and artificial recharge based on reducing exploitation can accelerate the recovery of groundwater table in the confined aquifer. Considering the speed of the recovery of groundwater and the impact of reducing exploitation on domestic, industrial and agricultural utilization of water resources, artificial recharge based on reducing exploitation Scenario B is better. Under this condition, the groundwater table of the confined aquifer in the center of depression cone will be recovered by 5 to 8 m up to the end of 2020.

2018 ◽  
Vol 246 ◽  
pp. 01040
Author(s):  
Hui Wan ◽  
Huiyong Huang ◽  
Sidong Zeng ◽  
Yibo Yan ◽  
Yongyan Wu ◽  
...  

The inter-basin water transfer project is one of the most important means to solve the uneven distribution of water resources in time and space, rationally allocate water resources, and promote the construction of water ecological civilization. Research on the operation impact and channel hydraulic response is meaning for the safe operation of long-distance water conveyance canals. Taking the Middle Route Project (MRP) of South-to-North Water Diversion (SNWD) as example, this paper built the onedimensional steady and unsteady flow model and investigated the impact of roughness change, emergency rescue technology and equipment, and sluice control failure. Results showed that increased roughness decreased the water diversion efficiency of MRP to some degree. The emergency rescue technology and equipment occupied the channel section and declined flow capacity. The occurrence of sluice control failure relatively played an increasing impact on upstream water level and a decreasing impact downstream water level and flow discharge. The impact of the above scenarios on the scheduling operation can be reduced to a certain extent by regular cleaning and maintenance, development of rational water emergency rescue project, development of staff skill, etc. This research can provide support for safe operation and regulation of the MRP of SNWD.


2017 ◽  
Vol 49 (4) ◽  
pp. 1156-1171 ◽  
Author(s):  
Fei Liu ◽  
Xianfang Song ◽  
Lihu Yang ◽  
Dongmei Han ◽  
Yinghua Zhang ◽  
...  

Abstract Groundwater is increasingly exploited for energy production in arid areas globally, which will inevitably disrupt the natural equilibrium of groundwater and the ecological environment. A groundwater flow model for Subei Lake basin, Ordos energy base, was developed and calibrated to predict groundwater levels' variation and the impact of heavy groundwater pumping on the ecological environment for the period 2010–2039 under two different pumping scenarios. Results showed that rainfall infiltration and groundwater evapotranspiration were the major source/sink terms for the groundwater system. The obvious groundwater depression cone will be formed in the production field at the end of 30 years and the maximum drawdown will be 11.70 m if the waterworks maintains the present situation. However, recovery of groundwater level will be obvious and the groundwater depression cone will disappear as a result of the implementation of the water diversion project. The increased volume of groundwater pumping between the two scenarios was derived from storage depletion, the activated lateral inflow, the captured groundwater evapotranspiration, lateral outflow and discharge into Subei Lake. Groundwater pumping from Haolebaoji waterworks has caused the decline of the Subei Lake and the noticeable degradation of phreatophyte.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2722
Author(s):  
Xichen Lin ◽  
Zhifei Zhang ◽  
Hongzhen Ni ◽  
Genfa Chen ◽  
Guangheng Ni ◽  
...  

Water shortages in the Beijing-Tianjin-Hebei (BTH) region in China have constrained the region’s coordinated development. A feasible solution is introducing water rights transactions through the middle route of the South-to-North Water Diversion Project (SNWDP). However, there are few methods available for systematically simulating and evaluating the impact of inter-regional water rights transactions. In this study, an improved computable general equilibrium (CGE) model was developed to simulate the water rights transactions. Different water resources were integrated as intermediate inputs, and the model includes a substitution mechanism between different water resources. The water stress index (WSI) was used to evaluate the impact on the economy and water resources simulated by the model. The study proposes and evaluates different scenarios with different water-saving levels and transaction volumes. Water rights transactions have a positive effect on the overall economic growth of the BTH region, reducing the local water resource stress in Beijing and Tianjin; the transactions have a limited impact on the economy and water usage of Hebei Province. Compared with the general water-saving intensity scenario without water rights transactions, the recommended scenario adopts ultra water-saving intensity, along with the transfer of 100 hm3 of water rights from Hebei to Beijing and Tianjin. This leads to an increase in the overall gross domestic product (GDP) of the BTH region by CNY 0.587 trillion (USD 99.6 billion); a decrease in local water usage in Beijing and Tianjin of 197 hm3; and a relief in the regional imbalance of water resources stress. This study provides a quantitative analysis tool for evaluating the impact of water rights transactions and optimizing water resources allocations in the BTH region, providing a reference for simulating and evaluating water rights transactions in other regions.


2021 ◽  
Vol 13 (10) ◽  
pp. 2014
Author(s):  
Celina Aznarez ◽  
Patricia Jimeno-Sáez ◽  
Adrián López-Ballesteros ◽  
Juan Pablo Pacheco ◽  
Javier Senent-Aparicio

Assessing how climate change will affect hydrological ecosystem services (HES) provision is necessary for long-term planning and requires local comprehensive climate information. In this study, we used SWAT to evaluate the impacts on four HES, natural hazard protection, erosion control regulation and water supply and flow regulation for the Laguna del Sauce catchment in Uruguay. We used downscaled CMIP-5 global climate models for Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5 projections. We calibrated and validated our SWAT model for the periods 2005–2009 and 2010–2013 based on remote sensed ET data. Monthly NSE and R2 values for calibration and validation were 0.74, 0.64 and 0.79, 0.84, respectively. Our results suggest that climate change will likely negatively affect the water resources of the Laguna del Sauce catchment, especially in the RCP 8.5 scenario. In all RCP scenarios, the catchment is likely to experience a wetting trend, higher temperatures, seasonality shifts and an increase in extreme precipitation events, particularly in frequency and magnitude. This will likely affect water quality provision through runoff and sediment yield inputs, reducing the erosion control HES and likely aggravating eutrophication. Although the amount of water will increase, changes to the hydrological cycle might jeopardize the stability of freshwater supplies and HES on which many people in the south-eastern region of Uruguay depend. Despite streamflow monitoring capacities need to be enhanced to reduce the uncertainty of model results, our findings provide valuable insights for water resources planning in the study area. Hence, water management and monitoring capacities need to be enhanced to reduce the potential negative climate change impacts on HES. The methodological approach presented here, based on satellite ET data can be replicated and adapted to any other place in the world since we employed open-access software and remote sensing data for all the phases of hydrological modelling and HES provision assessment.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 793
Author(s):  
Abdul Razzaq Ghumman ◽  
Mohammed Jamaan ◽  
Afaq Ahmad ◽  
Md. Shafiquzzaman ◽  
Husnain Haider ◽  
...  

The evaporation losses are very high in warm-arid regions and their accurate evaluation is vital for the sustainable management of water resources. The assessment of such losses involves extremely difficult and original tasks because of the scarcity of data in countries with an arid climate. The main objective of this paper is to develop models for the simulation of pan-evaporation with the help of Penman and Hamon’s equations, Artificial Neural Networks (ANNs), and the Artificial Neuro Fuzzy Inference System (ANFIS). The results from five types of ANN models with different training functions were compared to find the best possible training function. The impact of using various input variables was investigated as an original contribution of this research. The average temperature and mean wind speed were found to be the most influential parameters. The estimation of parameters for Penman and Hamon’s equations was quite a daunting task. These parameters were estimated using a state of the art optimization algorithm, namely General Reduced Gradient Technique. The results of the Penman and Hamon’s equations, ANN, and ANFIS were compared. Thirty-eight years (from 1980 to 2018) of manually recorded pan-evaporation data regarding mean daily values of a month, including the relative humidity, wind speed, sunshine duration, and temperature, were collected from three gauging stations situated in Al Qassim, Saudi Arabia. The Nash and Sutcliffe Efficiency (NSE) and Mean Square Error (MSE) evaluated the performance of pan-evaporation modeling techniques. The study shows that the ANFIS simulation results were better than those of ANN and Penman and Hamon’s equations. The findings of the present research will help managers, engineers, and decision makers to sustainability manage natural water resources in warm-arid regions.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Meiqin Suo ◽  
Fuhui Du ◽  
Yongping Li ◽  
Tengteng Kong ◽  
Jing Zhang

In this study, an inexact inventory theory-based water resources distribution (IIWRD) method is advanced and applied for solving the problem of water resources distribution from Yuecheng Reservoir to agricultural activities, in the Zhanghe River Basin, China. In the IIWRD model, the techniques of inventory model, inexact two-stage stochastic programming, and interval-fuzzy mathematics programming are integrated. The water diversion problem of Yuecheng Reservoir is handled under multiple uncertainties. Decision alternatives for water resources allocation under different inflow levels with a maximized system benefit and satisfaction degree are provided for water resources management in Yuecheng Reservoir. The results show that the IIWRD model can afford an effective scheme for solving water distribution problems and facilitate specific water diversion of a reservoir for managers under multiple uncertainties and a series of policy scenarios.


2019 ◽  
Vol 11 (22) ◽  
pp. 6463 ◽  
Author(s):  
Li ◽  
Yin ◽  
Zhang ◽  
Croke ◽  
Guo ◽  
...  

The Beijing-Tianjin-Hebei (Jingjinji) region is the most densely populated region in China and suffers from severe water resource shortage, with considerable water-related issues emerging under a changing context such as construction of water diversion projects (WDP), regional synergistic development, and climate change. To this end, this paper develops a framework to examine the water resource security for 200 counties in the Jingjinji region under these changes. Thus, county-level water resource security is assessed in terms of the long-term annual mean and selected typical years (i.e., dry, normal, and wet years), with and without the WDP, and under the current and projected future (i.e., regional synergistic development and climate change). The outcomes of such scenarios are assessed based on two water-crowding indicators, two use-to-availability indicators, and one composite indicator. Results indicate first that the water resources are distributed unevenly, relatively more abundant in the northeastern counties and extremely limited in the other counties. The water resources are very limited at the regional level, with the water availability per capita and per unit gross domestic product (GDP) being only 279/290 m3 and 46/18 m3 in the current and projected future scenarios, respectively, even when considering the WDP. Second, the population carrying capacity is currently the dominant influence, while economic development will be the controlling factor in the future for most middle and southern counties. This suggests that significant improvement in water-saving technologies, vigorous replacement of industries from high to low water consumption, as well as water from other supplies for large-scale applications are greatly needed. Third, the research identifies those counties most at risk to water scarcity and shows that most of them can be greatly relieved after supplementation by the planned WDP. Finally, more attention should be paid to the southern counties because their water resources are not only limited but also much more sensitive and vulnerable to climate change. This work should benefit water resource management and allocation decisions in the Jingjinji region, and the proposed assessment framework can be applied to other similar problems.


Sign in / Sign up

Export Citation Format

Share Document