Catalytic Synthesis of N-Butyl Acetate by Silicotungstic Acid Supported on Bentonite

2012 ◽  
Vol 550-553 ◽  
pp. 362-365
Author(s):  
Jian Zhong Jin

A series of solid acid catalysts were synthesized by incipient wetness impregnation method by varying the wt% of silicotungstic acid on bentonite. Silicotungstic acid supported on bentonite was used to catalytic synthesise of n-butyl acetate with acetic acid and n-butyl alcohol . The main reaction parameters such as silicotungstic acid loading on bentonite, the amount of catalyst, molar ratio of reactants, reaction temperature and reaction time have been investigated. The optimum conditions were determined as follows : silicotungstic acid loading on bentonite 20 wt %, catalyst 0.7 g , mole ratio of n-butanol to acetic acid 1:1.1, reaction temperature 98 °C and reaction time 2 h . The esterification yield of n-butyl acetate was about 98.2 %. The catalyst could be used repeatedly for many times without distinct loss in activity.

2013 ◽  
Vol 634-638 ◽  
pp. 647-650
Author(s):  
Jian Zhong Jin ◽  
Na Bo Sun

The silicotungstic acid catalyst supported on bentonite was employed in the esterification of menthol and lactic acid. The main reaction parameters were silicotungstic acid loading on bentonite, the amounts of catalyst, molar ratio of reactants, reaction temperature and reaction time. The optimum conditions were determined as follows : silicotungstic acid loading on bentonite 50 wt %, catalyst 1.25 g , mole ratio of menthol to lactic acid 1:1.1, reaction temperature 130 °C and reaction time 3 h . The esterification yield of menthyl lactiate was about 83.97 %. The catalyst could be used repeatedly for many times without distinct loss in activity.


2013 ◽  
Vol 634-638 ◽  
pp. 628-631
Author(s):  
Yun Hui Long ◽  
Jun Ming Guo ◽  
Du Shu Huang ◽  
Gui Yang Liu

The catalytic synthesis of ethyl acetate from ethanol and acetic acid using Ti2SnC in liquid phase under the atmospheric pressure was studied. The influences of some factors such as catalyst usage, initial reactant molar ratio, reaction temperature and reaction time on acetic acid conversion rate of this reaction system were investigated. The acetic acid conversion rate of 88.12% is achieved while the molar ratio of alcohol and acid is 1:3.6, the amount of catalyst is 0.2000 g, the reaction temperature is 80 °C and the reaction time is 30min. The catalyst Ti2SnC is the ideal catalyst for synthesis of ethyl acetate for good catalytic performance, non-corrosive to equipment, easily separated from product and used repeatedly.


2011 ◽  
Vol 396-398 ◽  
pp. 1132-1137
Author(s):  
Liang Wu Bi ◽  
Qiu Ge Zhang ◽  
Zhen Dong Zhao ◽  
Da Wei Li

The chemical oxidation of p-cymene was preliminarily studied by several oxidants. The conversion of p-cymene and selectivity of p-cymen-8-ol were both influenced by the factors such as dosage of oxidant, dosage of sulphuric acid, reaction time, reaction temperature and solvent variety. The reasonable oxidation conditions were molar ratio of p-cymene to potassium permanganate 1:3, molar ratio of sulphuric acid to potassium permanganate 0.13:1, mixture of water and acetic acid (1:1, v/v) as solvent, reaction temperature 80 °C and reaction time 9 h. The conversion of p-cymene and selectivity of p-cymen-8-ol were respectively 92.21 % and 69.65 % in the reasonable oxidation conditions. The by-products of p-cymene oxidation mainly included p-iso-propyl benzoic acid, p-isopropyl benzaldehyde and p-methyl acetophenone.


Author(s):  
Xueyang Li ◽  
Jiao Zhang ◽  
Yunfei Song ◽  
Yanhong Ji ◽  
Mohammad Younas ◽  
...  

AbstractIn this work, the esterification of glycerol with acetic acid (HOAc) was investigated under sulfonated polyphenylene sulfide non-woven fabric (SPSF) as a solid catalyst. The effects of the amount of catalyst, reaction temperature, molar ratio of glycerol to HOAc and the reaction time on the esterification were studied in detail. It was found that SPSF has good catalytic activity and stability. Under the reaction conditions of the molar ratio of glycerol/HOAc of 1:6 (glycerol 0.1 mol), the reaction temperature of 110 °C, the amount of catalyst of 3 g, and the reaction time of 2 h, the glycerol conversion and the selectivity to diacetin (DAG) reached upto 96 and 56.1%, respectively. Reusability test of SPSF showed that no significant declination in the glycerol conversion and the selectivity was observed after five reaction cycles. The experimental results proved the esterification of glycerol with HOAc by SPSF a promising and green process.


2020 ◽  
Vol 2 (1) ◽  
pp. 92-97
Author(s):  
Jamilu Usman ◽  
Bashar Abdullahi Hadi ◽  
Buhari Idris ◽  
Umar Musa Tanko ◽  
Bashar Usman ◽  
...  

Biodiesel is an alternative diesel fuel consisting of the alkyl monoesters of fatty acids from vegetable oils or animal fats. Biodiesel is a promising alternative fuel derived from animal fats or vegetable oil through transesterification with methanol. Base catalyzed transesterification is the most commonly used technique as it is the most economical process. Presently, a lot of heterogeneous catalysts have been formulated that are more effective than the homogeneous catalysts. CaO/Al2O3 was synthesized using incipient wetness impregnation method. The biodiesel was developed and optimized using Box-behnken response surface methodology (RSM) design provided using MINITAP-17 statistical software. The four independent variables considered are: reaction time, methanol to oil ratio, reaction temperature and catalyst concentration. The response chosen was fatty acid methyl ester (FAME) yields which were obtained from the reaction. The result from analysis of variance (ANOVA) showed a satisfactory result. Moreover, the input variables showed greater significance on the response which are reaction time and temperature base on F and P-value. The statistical models developed for predicting biodiesel yield revealed a significant agreement between the experimental and predicted values (R = 0.9686). An optimum methyl ester yield of 93.29 % was achieved with optimal conditions of methanol/oil molar ratio of 6:1, temperature of 600C, reaction time of 120 min and catalyst concentration of 1.0 wt%. The properties of the biodiesel produced also falls within the range prescribed by ASTM standard


2021 ◽  
Author(s):  
Vaishali Mittal ◽  
Uttam Kumar Ghosh

Abstract Production of biodiesel from microalgae is gaining popularity since it does not compromise food security or the global economy. This article reports biodiesel production with Spirulina microalgae through nanocatalytic transesterification process. The nanocatalyst calcium methoxide Ca(OCH3)2 was synthesized using wet impregnation method and utilized to carry out the transesterification process. The nanocatalyst was characterized to evaluate its structural and spectral characteristics using different characterization techniques such as Thermogravimetric analysis (TGA), X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and Brunaeur-Emmett-Teller(BET) measurement for surface area. The result demonstrates that calcium methoxide Ca(OCH3)2 possesses a high catalytic activity compared to a heterogeneous catalyst such as calcium oxide (CaO). The impact of several process parameters such as reaction temperature, the molar ratio of methanol to oil, catalyst concentration, and reaction time used in the transesterification process was optimized by employing central composite design(CCD) based response surface methodology(RSM). The polynomial regression equation of second order was obtained for methyl esters. The model projected a 99% fatty acid methyl esters (FAME) yield for optimal process parameters of reaction time 3hrs,3 wt.% of Ca(OCH3)2 catalyst loading, 80°C reaction temperature, and 30:1 methanol to oil molar ratio.


2017 ◽  
Vol 5 (3) ◽  
Author(s):  
Rokhsana M. Ismail

Jatropha as an non edible plant is a promising plant for biodiesel production Positive environmental impacts from the cultivation of this plant including the improvement of wasteland, sustainable employment for local people, and carbon farming. For industrial biodiesel production, homogeneous basic catalyst, including KOH, NaOH, as well as potassium and sodium alkoxides, are commonly used for the transetrification of Jatropha oils with methanol to produce fatty acid methyl ester. However the base-catalyzed process suffers from several drawbacks, such as difficulty in recycling catalyst and environmental pollution. The aim of this paper is to circumvent homogeneous process problems, attempts to use heterogeneous catalysts in the transetrification of Jatropha oils.Titanium supported MgO catalyst samples ( 10 and 20 wt % MgO loading ) were prepared by incipient wetness impregnation method and characterized using FTIR, XRF, BET and XRD techniques. These materials were tested as catalyst for the conversion of Jatropha oil to biodiesel in the presence of methanol. The effects of reaction temperature, reaction time and MgO loading on the Jatropha oil conversion have been established. It was observed that for the same reaction time and MgO loading, increasing the reaction temperature increased the biodiesel yield. For example, the oil conversion over 20% MgO/TiO2 catalyst after 60 min of reaction at 60ْ C, 150ْ C, 175ْ C, 200ْ C and 225ْ C was found to be 42,55,86,89 and 100% respectively. An increase in oil conversion was also observed when the reaction time was increased. For example, biodiesel yield of 37, 43, 50, 51, for 10% MgO/TiO2  after 15, 30, 45 and 60 min respectively were measured at 175ْ C.Catalytic properties for MgO/TiO2 solid catalyst were evaluated for the conversion of Jatropha oil to biodiesel. The effects of reaction temperature, reaction time and MgO loading on the Jatropha oil conversion have been established. It was observed that oil conversion increases with the increase in reaction temperature and reaction time. The effect of MgO loading on the Jatropha conversion was found to depend on the operating temperature. An increase in Jatropha oil conversion with an increase in MgO loading was observed at reaction temperature above 150ْC, So the cultivation of Jatropha in Yemen will improve the economic and environmental situation. In addition the researches should be continued for getting more reused catalyst with sufficient properties.


2013 ◽  
Vol 781-784 ◽  
pp. 983-987
Author(s):  
De Li Shen ◽  
Xin He ◽  
Wei Guan ◽  
Yu Ping Liu ◽  
Bao Guo Sun

1-(3,3-dimethylcyclohexyl) ethyl acetate was synthesized by the reaction of dihydromycene with acetic acid in the presence of sulfuric acid. The effecting factors including the amount of catalyst, the reaction temperature, the molar ratio of raw materials and the reaction time were investigated. The experimental results showed that the molar raio of the dihydromyrcene to acetic acid to sulfuric acid was 1:3:0.2, the reaction temperature is 60 °C and the reaction time was 6.5 h. The yield reached 45.3%. The structure of product was characterized by gas chromatography, mass spectrometry, infrared spectroscopy and nuclear magnetic resonance. The odor evaluation result indicated that the product had a sweet, woody, floral odor.


2019 ◽  
Vol 59 (1) ◽  
pp. 88-97 ◽  
Author(s):  
Adeyinka S. Yusuff ◽  
Lekan T. Popoola

An optimization of the biodiesel production from a waste frying oil via a heterogeneous transesterification was studied. This present study is also aimed at investigating the catalytic ehaviour of the alumina supported eggshell (ASE) for the synthesis of biodiesel. A synthesized ASE catalyst, at various mixing ratios of alumina to eggshell, was investigated and exhibited a better activity for the reaction when the eggshell and alumina were mixed via incipient wetness impregnation in 2 : 1 proportion on a mass basis and calcined at 900 °C for 4 h. The as-synthesized catalyst was characterized by basicity, BET, SEM, EDX, and FTIR. The 2k factorial experimental design was employed for an optimization of process variables, which include catalyst loading, reaction time, methanol/oil molar ratio and reaction temperature and their effects on the biodiesel yield were studied. The optimization results showed that the reaction time has the highest percentage contribution of 40.139% while the catalyst loading contributes the least to the biodiesel production, as low as 1.233 %. The analysis of variance (ANOVA) revealed a high correlation coefficient (R2 = 0.9492) and the interaction between the reaction time and reaction temperature contributes significantly to the biodiesel production process with percentage contribution of 14.001 %, compared to other interaction terms. The biodiesel yield of 77.56% was obtained under the optimized factor combination of 4.0 wt.% catalyst loading, 120 min reaction time, 12 : 1 methanol/oil molar ratio and reaction temperature of 65 °C. The reusability study showed that the ASE catalyst could be reused for up to four cycles and the biodiesel produced under optimum conditions conformed to the ASTM standard.


2011 ◽  
Vol 396-398 ◽  
pp. 2411-2415 ◽  
Author(s):  
Ping Lan ◽  
Li Hong Lan ◽  
Tao Xie ◽  
An Ping Liao

Isoamyl acetate was synthesized from isoamylol and glacial acetic acid with strong acidic cation exchanger as catalyst. The effects of reaction conditions such as acid-alcohol ratio, reaction time, catalyst dosage to esterification reaction have been investigated and the optimum reaction conditions can be concluded as: the molar ratio of acetic acid to isoamylol 0.8:1, reaction time 2h, 25 % of catalyst (quality of acetic acid as benchmark). The conversion rate can reach up to 75.46%. The catalytic ability didn’t reduce significantly after reusing 10 times and the results showed that the catalyst exhibited preferably catalytic activity and reusability.


Sign in / Sign up

Export Citation Format

Share Document