The Interface Properties of La2O3/GaAs System by Surface Passivation

2012 ◽  
Vol 557-559 ◽  
pp. 1815-1818 ◽  
Author(s):  
Ting Ting Jia ◽  
Xing Hong Cheng ◽  
Duo Cao ◽  
Da Wei Xu ◽  
You Wei Zhang ◽  
...  

In this work, La2O3 gate dielectric film was deposited by plasma enhanced atomic layer deposition. we investigate the effect of surface preparation of GaAs substrate, for example, native oxide, S-passivation, and NH3 plasma in situ treatment. The interfacial reaction mechanisms of La2O3 on GaAs is studied by means of X-ray photoelectron spectroscopy(XPS), high-resolution transmission electron microscopy(HRTEM) and atomic force microscope (AFM). As-O bonding is found to get effectively suppressed in the sample GaAs structures with both S-passivation and NH3 plasma surface treatments.

2012 ◽  
Vol 629 ◽  
pp. 127-130
Author(s):  
Ting Ting Jia ◽  
Xing Hong Cheng ◽  
Duo Cao ◽  
Da Wei Xu ◽  
Chao Xia ◽  
...  

In this work, we present the results of an investigation into the effectiveness of varying ammonium sulphide (NH4)2S concentrations in the passivation of n-type GaAs. Samples were degreased and immersed in aqueous (NH4)2S solutions of concentrations 22% and 10%for 10 min at 295 K, immediately prior to plasma enhanced atomic layer deposition of LaAlO3. The chemical bonding state of (NH4)2S treated GaAs surface were investigated by X-ray photoelectron spectroscopy (XPS), which indicate that Sulfur passivation can reduce intrerfacial GaAs-oxide formation. Transmission electron microscopy (TEM) was implemented to characterize the interface morphology. Finally, capacitance-voltage (C-V) and leakage current density-voltage (J-V) measurement were used to characterize the electrical properties of LaAlO3 films.


2006 ◽  
Vol 917 ◽  
Author(s):  
Jasmine Petry ◽  
Chris Rittersma ◽  
Georgios Vellianitis ◽  
Vincent Cosnier ◽  
Thierry Conard ◽  
...  

AbstractThe need for nitridation of Hf silicate is controversial. On one hand, it has not been proven that the nitridation is mandatory to have working devices and on the other hand, it is known to increase the charge density. In this paper, we present a detailed comprehensive study of the role and the need for nitridation of Hf-based silicates deposited by Atomic Layer Deposition (ALD). The results are based on a correlation of Fourier-Transformed Infrared Spectroscopy (FT-IR), X-ray Photoelectron Spectroscopy (XPS), High-resolution Transmission Electron Microscopy (HR-TEM) and electrical measurements (gate leakage and mobility).It was observed that the phase segregation in gate dielectrics is not detrimental for the gate leakage density at room temperature. However, the leakage current is significantly increased at higher temperature. The incorporation of nitrogen was either done by NH3 anneal (at 800C) or by Decoupled Plasma Nitridation (DPN – 25.9kJ). While the DPN or NH3 anneal prevent phase segregation for 50% Hf silicate, only the NH3 anneal helps prevent the phase segregation of Hf-rich silicate. Furthermore, the NH3 anneal increases the interfacial thickness, which produces a very low gate leakage with only 10% loss in mobility at high field. Interestingly, DPN followed by O2 anneal leads to an advantageous phase segregation of the Hf-rich silicate by transforming the silicate in a HfO2/SiO2-like stack.As a conclusion, not only the phase segregation of the silicate does not always lead to shorted devices, but it can be beneficial in terms of mobility. However, the phase segregation seems to be responsible for an enlarged trap-assisted conduction mechanism at high temperature. But even if the 50% Hf silicates non-nitrided leads to working devices, the incorporation of nitrogen in the stack improves the Jg/CET trends and is therefore beneficial.


2013 ◽  
Vol 721 ◽  
pp. 24-28 ◽  
Author(s):  
Duo Cao ◽  
Xin Hong Cheng ◽  
Ting Ting Jia ◽  
Da Wei Xu ◽  
Li Zheng ◽  
...  

Plasma enhanced atomic layer deposition (PEALD) method can decrease film growing temperature, and allow in-situ plasma treatment. LaAlO3 films were deposited with PEALD at 180°C. High resolution transmission electron microscopy (HRTEM) results exhibited amorphous microstructure of both films even after rapid thermal annealing (RTA) at 800°C. X-ray photoelectron spectroscopy (XPS) spectra suggested that the valence-band offset between the LaAlO3 film and the substrate was 3.3 eV. The electrical experimental results indicated that the leakage current densities were 0.10mA/cm2 and 0.03mA/cm2 respectively at a gate bias of |Vg-Vfb|=1V and the equivalent oxide thicknesses (EOT) of them were 1.2 nm and 1.4 nm, respectively. The densities of interfacial states were calculated to be 1.70×1012eV-1cm-2 and 1.09×1012eV-1cm-2, respectively.


Coatings ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 369 ◽  
Author(s):  
Richard Krumpolec ◽  
Tomáš Homola ◽  
David Cameron ◽  
Josef Humlíček ◽  
Ondřej Caha ◽  
...  

Sequentially pulsed chemical vapour deposition was used to successfully deposit thin nanocrystalline films of copper(I) chloride using an atomic layer deposition system in order to investigate their application to UV optoelectronics. The films were deposited at 125 °C using [Bis(trimethylsilyl)acetylene](hexafluoroacetylacetonato)copper(I) as a Cu precursor and pyridine hydrochloride as a new Cl precursor. The films were analysed by XRD, X-ray photoelectron spectroscopy (XPS), SEM, photoluminescence, and spectroscopic reflectance. Capping layers of aluminium oxide were deposited in situ by ALD (atomic layer deposition) to avoid environmental degradation. The film adopted a polycrystalline zinc blende-structure. The main contaminants were found to be organic materials from the precursor. Photoluminescence showed the characteristic free and bound exciton emissions from CuCl and the characteristic exciton absorption peaks could also be detected by reflectance measurements.


Author(s):  
Anil G. Khairnar ◽  
Vilas S. Patil ◽  
K.S. Agrawal ◽  
Prerna A. Pandit ◽  
Rahul S. Salunke ◽  
...  

The study of ZrO2 thin films on SiC group IV compound semiconductor has been studied as a high mobility substrates. The ZrO2 thin films were deposited using the Plasma Enhanced Atomic Layer Deposition System. The thickness of the thin films were measured using ellipsometer and found to be 5.47 nm. The deposited ZrO2 thin films were post deposited annealed in rapid thermal annealing chamber at temperature of 400oC. The atomic force microscopy and x-ray photoelectron spectroscopy has been carried out to study the surface topography and roughness and chemical composition of thin film respectively. DOI: 10.21883/FTP.2017.01.8125


2022 ◽  
Vol 93 (1) ◽  
pp. 013905
Author(s):  
E. Kokkonen ◽  
M. Kaipio ◽  
H.-E. Nieminen ◽  
F. Rehman ◽  
V. Miikkulainen ◽  
...  

2020 ◽  
Vol 22 (17) ◽  
pp. 9262-9271
Author(s):  
Sofie S. T. Vandenbroucke ◽  
Elisabeth Levrau ◽  
Matthias M. Minjauw ◽  
Michiel Van Daele ◽  
Eduardo Solano ◽  
...  

By the powerful combination of in situ FTIR and in vacuo XPS, the surface species during ALD of TDMAT with different reactants could be identified.


2017 ◽  
Vol 419 ◽  
pp. 107-113 ◽  
Author(s):  
Konstantin V. Egorov ◽  
Yury Yu. Lebedinskii ◽  
Anatoly A. Soloviev ◽  
Anastasia A. Chouprik ◽  
Alexander Yu. Azarov ◽  
...  

2007 ◽  
Vol 1054 ◽  
Author(s):  
Andrew S. Cavanagh ◽  
Christopher A. Wilson ◽  
Alan W. Weimer ◽  
Steven M. George

ABSTRACTAtomic layer deposition (ALD) was performed on quantities of multiwalled carbon nanotubes (MWCNTs) in a rotary reactor. Because of nucleation difficulties, Al2O3 ALD grew as nanospheres on the MWCNTs. After a NO2 nucleation treatment, Al2O3 ALD films grew conformally and noncovalently functionalized the surface of the MWCNT. This Al2O3 ALD film served as a platform for the growth of W ALD metal. The uncoated and ALD-coated MWCNTs were characterized with transmission electron microscopy and x-ray photoelectron spectroscopy. This study demonstrates that ALD can be performed on quantities of very high surface area MWCNT substrates.


Sign in / Sign up

Export Citation Format

Share Document