Adjust the Content of Nickel in NiZnO Films by Vacuum Anneal

2012 ◽  
Vol 562-564 ◽  
pp. 11-14 ◽  
Author(s):  
Xin Dong ◽  
Jin Wang ◽  
Hui Wang ◽  
Zhi Feng Shi ◽  
Bao Lin Zhang

NiZnO films were grown on sapphire substrates by metal-organic chemical vapor deposition (MOCVD). Then the films were annealed in vacuum at different temperatures for 1h. The UV emission peak was blue shifted in the photoluminescence (PL) spectra and a dramatic shift of (002) diffraction peak to higher angle was observed in X-ray diffraction (XRD) pattern with the increasing anneal temperature. It showed the band gap and the lattice parameter of NiZnO had been affected by anneal in vacuum. From the X-ray photoelectron spectroscopy (XPS) of the NiZnO film, we can find that the anneal temperature had an important effect on the content of each element in NiZnO quantificationally. In addition, the value of x in NiZnO varied slightly with the anneal temperature increasing. The above phenomena indicated that anneal in vacuum could slightly adjust the percentage of Ni indirectly in NiZnO film and offer a good idea in NiZnO devices facture.

2009 ◽  
Vol 1202 ◽  
Author(s):  
Mohammad Ahmad Ebdah ◽  
Martin E. Kordesch ◽  
Andre Anders ◽  
Wojciech M. Jadwisienczak

AbstractIn this work, europium implanted InGaN/GaN SL with a fixed well/barrier thickness ratio grown by metal-organic chemical-vapor deposition (MOCVD) on GaN/(0001) sapphire substrate were investigated. The as-grown and Eu ion implanted InGaN/GaN SLs were annealed at different temperatures ranging from 600°C to 950°C in nitrogen ambient. The quality of the SL interfaces in undoped and implanted structures has been investigated by X-ray diffraction (XRD) at room temperature. The characteristic satellite peaks of SLs were measured for the (0002) reflection up to the second order in the symmetric Bragg geometry. The XRD simulation spectrum of the as-grown SL agrees well with the experimental results. The simulation results show x=0.06 atomic percent the InGaN well sub-layers, with thicknesses of 2.4 and 3.3 nm for single InGaN well and GaN barrier, respectively. It was observed that annealing of the undoped SL does not significantly affect the interfacial quality of the superstructure, whereas, the Eu ion implanted InGaN/GaN SL undergo partial induced degradation. Annealing the implanted SLs shows a gradual improvement of the multilayer periodicity and a reduction of the induced degradation with increasing the annealing temperature as indicated by the XRD spectra.


1998 ◽  
Vol 541 ◽  
Author(s):  
P. Lu ◽  
S. He ◽  
F. X. Li ◽  
Q. X. Jia

AbstractConductive RuO2 thin films have been grown epitaxially on (100) MgO and (100) LaAlO3 substrates by metal-organic chemical vapor deposition(MOCVD) at different temperatures. The microstructural properties of the RuO2 films have been studied using x-ray diffraction and scanning electron microscopy. Different growth and microstructure properties were observed for the films deposited on the two substrates. The films on MgO are epitaxial at deposition temperatures as low as 350°C, and consist of two variants with an orientation relationship given by (110) RuO2 /(100) MgO and [001] RuO2//[011]MgO. The films on LaAlO3, on the other hand, are epitaxial only at deposition temperatures of 600°C and above, and contain four variants with an orientation relationship given by (200)RuO2//(100)LaAlO3 and [011] RuO2//[011] LaAlO3. The observed microstructures of epitaxially grown films can be explained based on geometric considerations for the films and substrates.


2009 ◽  
Vol 421-422 ◽  
pp. 135-138
Author(s):  
Ken Nishida ◽  
Minoru Osada ◽  
Shintaro Yokoyama ◽  
Takafumi Kamo ◽  
Takashi Fujisawa ◽  
...  

Micro-patterned Pb(Zr,Ti)O3 (PZT) films with dot-pattern were grown by metal organic chemical vapor phase deposition (MOCVD). Micro-patterned Pb(Zr,Ti)O3 (PZT) films were formed on dot-patterned SrRuO3 (SRO) buffer layer that was prepared by MOCVD through the metal mask on (111)Pt/Ti/SiO2/Si substrate. The orientation of dot-patterned PZT films was ascertained by the micro-beam x-ray diffraction (XRD) and their crystallinity was characterized by Raman spectroscopy. It was found that PZT films were oriented to (111) on dot-pattern, while (100)/(001) out of dot-pattern and the amount of oxygen vacancies at the circumference of the dot-pattern were larger than that of center of dot-pattern.


2015 ◽  
Vol 1738 ◽  
Author(s):  
Andrew J. Clayton ◽  
Stuart J. C. Irvine ◽  
Vincent Barrioz ◽  
Alessia Masciullo

ABSTRACTAn inline metal organic chemical vapor deposition system was used to deposit tin sulfide at temperatures >500 °C. Tetramethyltin was used as the tin source and diethyldisulfide as the sulfur source. An overhead injector configuration was used delivering both precursors directly over the substrate. The tin and sulfur precursors were premixed before injection to improve chemical reaction in the gas phase. Growth temperatures 500 – 540 °C were employed producing films with approximate 1:1 stoichiometry of Sn and S detected by energy dispersive x-ray spectroscopy. X-ray diffraction showed there to be mixed phases with Sn2S3 present with SnS.


2013 ◽  
Vol 1538 ◽  
pp. 283-289
Author(s):  
A. G. Taboada ◽  
T. Kreiliger ◽  
C. V. Falub ◽  
M. Richter ◽  
F. Isa ◽  
...  

ABSTRACTWe report on the maskless integration of micron-sized GaAs crystals on patterned Si substrates by metal organic vapor phase epitaxy. In order to adapt the mismatch between the lattice parameter and thermal expansion coefficient of GaAs and Si, 2 μm tall Ge crystals were first grown as virtual substrate by low energy plasma enhanced chemical vapor deposition. We investigate the morphological evolution of the GaAs structures grown on top of the Ge crystals at the transition towards full pyramids with energetically stable {111} facets. A substantial release of strain is shown in GaAs crystals with a height of 2 μm and lateral sizes up to 15×15 μm2 by both X-ray diffraction and photoluminescence.


2008 ◽  
Vol 41 (2) ◽  
pp. 272-280 ◽  
Author(s):  
Virginie Chamard ◽  
Julian Stangl ◽  
Stephane Labat ◽  
Bernhard Mandl ◽  
Rainer T. Lechner ◽  
...  

InAs nanowire samples grown by metal-organic chemical vapor deposition present a significant amount of wurtzite structure, while the zincblende lattice is known to be the stable crystal structure for the bulk material. The question of the wurtzite distribution in the sample is addressed using phase-sensitive coherent X-ray diffraction with a micro-focused beam at a synchrotron source. The simultaneous investigation of the wurtzite 10\bar{1}0, 20\bar{2}0 and 30\bar{3}0 reflections performed on a bunch of single wires shows unambiguously that the wurtzite contribution is a result of stacking faults distributed along the wire. Additional simulations lead to adjustments of the wire structural parameters, such as the wurtzite content, the strain distribution, the wire diameters and their respective orientations.


2011 ◽  
Vol 413 ◽  
pp. 11-17 ◽  
Author(s):  
Bin Feng Ding ◽  
Yong Quan Chai

A GaN epilayer with tri-layer AlGaN interlayer grown on Si (111) by metal-organic chemical vapor deposition (MOCVD) method was discussed by synchrotron radiation x-ray diffraction (SRXRD) and Rutherford backscattering (RBS)/C. The crystal quality of the epilayer is very good with a χmin=2.1%. According to the results of the θ-2θ scan of GaN(0002) and GaN(1122), the epilayer elastic strains in perpendicular and parallel directions were calculated respectively to be-0.019% and 0.063%. By the angular scan using RBS/C around a symmetric [0001] axis and an asymmetric [1213] axis in the (1010) plane of the GaN layer, the tetragonal distortion (eT ) were determined to be 0.09%. This result coincides with that from SRXRD perfectly. The strain decreases gradually towards the near-surface layer, which will avoid the film cracks efficiently and improve the crystal quality of the GaN epilayer remarkably.


2008 ◽  
Vol 1068 ◽  
Author(s):  
KungLiang Lin ◽  
Edward-Yi Chang ◽  
Tingkai Li ◽  
Wei-Ching Huang ◽  
Yu-Lin Hsiao ◽  
...  

ABSTRACTGaN film grown on Si substrate with AlN/AlxGa1−xN buffer is studied by low pressure metal organic chemical vapor deposition (MOCVD) method. The AlxGa1−xN film with Al composition varying from 0∼ 0.66 was used. The correlation of the Al composition in the AlxGa1−xN film with the stress of the GaN film grown was studied using high resolution X-ray diffraction including symmetrical and asymmetrical ω/2θscans and reciprocal space maps. It is found that with proper design of the Al composition in the AlxGa1−xN buffer layer, crack-free GaN films can be successfully grown on Si (111) substrates using AlN and AlxGa1−xN buffer layers.


Sign in / Sign up

Export Citation Format

Share Document