Preparation and Microanalysis Study of Nano-Hap/Cs-Chs Composites Materials

2012 ◽  
Vol 581-582 ◽  
pp. 463-466 ◽  
Author(s):  
Man De Qiu ◽  
Xiao Yan Wang ◽  
Yong Qing Zhai ◽  
Zi Hua Yao

Nano-hydroxyapatite/chitosan-chondroitin sulfate composites materials with different weight ratios were prepared through liquid co-precipitation method. The nano-Hap、Hap/Cs and Hap/Cs-Chs composites materials under the same conditions preparation materials were researched By XRD, SEM and EDS respectively. The results show that nano-Hap particles with poorly crystallinity, the size is about 20nm, nano-Hap particles are spherical in sHape and dispersed uniformly, combined with relatively loose between particles, the small nano-particles aggregate into larger particles when the Hap composite with the Cs and Chs, nano-Hap were dispersed uniformly in the organic phase Cs and Chs, Hap particles have the trend to grow large in composites materials,crystal become more perfect, combination become relatively dense between particles, The composites materials were annealed at 700°C,Hap crystal particles become more perfect clear and larger with relatively loose between particles.EDS analysis showed that the compound before and after annealing of the material ratio of calcium had no influence, material does not contain any impurities,The ratio of calcium and phosphorus is about 1.75:1,Hap belonging to the type of calcium-rich

2011 ◽  
Vol 311-313 ◽  
pp. 1713-1716 ◽  
Author(s):  
Yan Rong Sun ◽  
Tao Fan ◽  
Chang An Wang ◽  
Li Guo Ma ◽  
Feng Liu

Nano-hydroxyapatite with different morphology was synthesized by the co-precipitation method coupled with biomineralization using Ca(NO3)2•4H2O and (NH4)2HPO4 as reagents, adding chondroitin sulfate, agarose and aspartic acid as template. The structure and morphology of the prepared powders were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM).


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1380 ◽  
Author(s):  
Jinglin Li ◽  
Jianjun Wei ◽  
Yongbao Feng ◽  
Xiaoyun Li

6BaO·xCaO·2Al2O3 (x = 0.8, 1.2, 1.6, 2, and 2.2) aluminates were synthesized via a liquid phase co-precipitation method. Effects of the molar amount of CaO on the phase of aluminates before and after melting and their hygroscopic phase, melting properties, environmental stability, evaporation, and emission properties were systematically studied. The results show that with the increase of the molar amount of CaO, the aluminates change from a mixture phase to a single phase of Ba3CaAl2O7, and the diffraction peak shifts to a higher angle. The melted phase of the aluminates changed from a single phase to a mixed phase of Ba5CaAl4O12 and Ba3CaAl2O7. Meanwhile, the comprehensive properties of the aluminates are improved. The weight gain of 6BaO·2CaO·2Al2O3 aluminates is only 10.88% after exposure to air for 48 h; the pulse emission current density of barium tungsten cathodes impregnated with 6BaO·2CaO·2Al2O3 aluminates in the porous tungsten matrix can reach 28.60 A/cm2 at 1050 °C, and the evaporation rate is 2.52 × 10−10 g/(cm2·s).


2010 ◽  
Vol 322 (21) ◽  
pp. 3470-3475 ◽  
Author(s):  
Yue Zhang ◽  
Zhi Yang ◽  
Di Yin ◽  
Yong Liu ◽  
ChunLong Fei ◽  
...  

2012 ◽  
Vol 510-511 ◽  
pp. 171-176 ◽  
Author(s):  
M. Anis-ur-Rehman ◽  
Mariam Ansari ◽  
Zeb Un Nisa Mughal ◽  
M.S. Awan ◽  
Ashari Maqsood

Samples of Cr doped cobalt ferrite were prepared by co-precipitation route. These particles were characterized by X-ray diffraction (XRD) at room temperature. The structural properties were observed before and after sintering. The FCC spinel structure was confirmed by XRD patterns of the samples. The crystallite sizes lie in the range of 37-60 nm. DC electrical properties as a function composition were measured. Scanning electron microscopy was used in order to investigate the surface morphology of the prepared samples. The system for thermoelectric power measurement was designed, developed and calibrated in the laboratory. The room temperature thermoelectric power was measured for the prepared samples. The magnitude of Seebeck coefficient depends on the composition and resistivity of the samples. The obtained values of Seebeck coefficient for CoFe2O4are in good agreement to the reported values. Determined values of Seebeck coefficient for other studied compositions are an addition to the literature.


2019 ◽  
Vol 967 ◽  
pp. 259-266 ◽  
Author(s):  
Muhammad Rizal Fahlepy ◽  
Yuyu Wahyuni ◽  
Muhamma Andhika ◽  
Arini Tiwow Vistarani ◽  
Subaer

This research is about nanoparticles hematite (NPH) synthesized and characterized from natural iron sands using co-precipitation method and its potential applications as extrinsic semiconductor materials type-N. The aims of this study is to determine the process parameters to obtain hematite of high purity degree and to observe its physical characteristics as an extrinsic semiconductor materials type-N. The iron sand was first separated by magnetic technique and then dissolved into HCl solution before conducting the precipitation process. Precipitation was done by dripping ammonium hydroxide (NH4OH). Precipitated powder was dried at 80°C for 2 hours, and then calcined at 500°C, 600°C 700°C for 2 hours respectively. The composition of iron sands, purity degree, hematite mineral grain size, and space group were analyzed by XRF, XRD, FTIR and SEM. The XRF analysis result of raw material, showed that dominant element and composition in the sample is Fe with purity degree is 90.51%. The XRD result before and after precipitation showed Fe3O4 and α-Fe2O3. Fe3O4 purity degree was obtained 85%, and α-Fe2O3 in NPH500, NPH600, NPH700 were 63%, 83%, and 76%, respectively. FTIR spectral showed crystalline hematite characteristics stong band of 472.07 to 559.62 cm-1. SEM image showed the morphology of agglomeration particulates, when the calcinaton temperature increases, the agglomeration will be seperated due to thermal energy. Based on the charaterization results it was found that the natural iron sand synthesized has the potential to be applied as an N-type extrinsic semiconductor material.


2016 ◽  
Vol 30 (5) ◽  
pp. 1177-1186 ◽  
Author(s):  
Safia Anjum ◽  
Hafsa Saleem ◽  
Khalid Rasheed ◽  
Rehana Zia ◽  
Saira Riaz ◽  
...  

2011 ◽  
Vol 236-238 ◽  
pp. 2076-2079
Author(s):  
Yan Rong Sun ◽  
Tao Fan ◽  
Yong Huang ◽  
Li Guo Ma ◽  
Feng Liu

The introduction of biomineralization was coupled with the co-precipitation synthesis process of nano-hydroxyapatite with the addition of chondroitin sulfate as a template agent. The effect of a variety of processing conditions on the properties of final hydroxyapatite (HA) product was investigated by orthogonal design. The ratio of calcium to phosphorus was detected by chemical analysis, the phase composition was evaluated by X-ray diffraction (XRD), and the powder morphology was characterized by transmission electron microscope (TEM). The process scheme, moreover, was optimized by the analysis of four aspects which may have different extent of influence on product properties. It can be concluded from the results that product properties can be affected remarkably by the content of chondroitin sulfate and the pH value of reactant, less remarkably by the reaction temperature and slightly by the reaction time.


2009 ◽  
Vol 23 (03) ◽  
pp. 365-374 ◽  
Author(s):  
P. MATHUR ◽  
A. THAKUR ◽  
M. SINGH

Mn 0.4 Cu 0.4 Zn 0.2 Fe ferrite was synthesized by soft chemical approach called co-precipitation technique. The ferrite powder was calcined, compacted and sintered at 700°C and 800°C for 3 h. The initial permeability, density, grain size, Curie temperature and dc resistivity have been studied. X-ray diffraction (XRD) method confirmed the sample to be a single-phase spinel structure without unreacted constituents. The particle size was calculated from XRD spectrum using Scherrer's formula and found to be ~55 nm. Then, nanoparticles were observed with tunneling electron microscopy (TEM). Further, scanning electron micrograph (SEM) also confirmed nano-phase and the uniformity of the particles. The initial permeability values do not exhibit much variation with temperature, except near Curie temperature, where it falls sharply. The initial permeability is found to increase with the increase in sintering temperature. This is attributed to the increase in the grain size. Calculation of activation energy indicates that the given ferrite is p-type semiconductor. Mössbauer study of these samples shows superparamagnetic behavior, which also confirms the formation of nano-particles. Possible models and mechanisms contributing to these processes have been discussed.


Sign in / Sign up

Export Citation Format

Share Document