Magnetic Water Treatment to Inhibit Calcium Carbonate Scale Deposition in the Drainage System of an Old Tunnel in Seoul, South Korea

2012 ◽  
Vol 594-597 ◽  
pp. 2045-2055 ◽  
Author(s):  
Eric Yee ◽  
Jongh Wi Lee ◽  
Dae Sung Lim ◽  
Byung Sik Chun

Drainage inlets at the Namsan #3 traffic tunnel in Seoul, South Korea were found to be clogged with calcium carbonate scale deposits. Officials were concerned the clogged drains would further stress the already deteriorating traffic tunnel and wanted to see if there were any practical and economical solutions in removing or preventing scale deposits. A tunnel drainage simulator was constructed to determine the feasibility of using magnets to inhibit scale precipitation and deposition. Test results from the simulation show 6.0 and 4.4 g of deposited calcium carbonate in pipes inclined at 2° and 5° respectively, while magnetically treated water resulted in 10.8 and 4.3 g of deposited calcium carbonate in pipes inclined at 2° and 5° respectively. Calcium carbonate scale samples from the tunnel drainage test underwent x-ray diffraction analysis and showed the magnetically treated water to precipitate more aragonite. The solubility product and crystalline structures of calcite and aragonite are able to help explain tunnel drainage test results and suggest water flow velocity to be a potentially important factor in calcium scale inhibition if magnets are used.

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3428
Author(s):  
Chanbasha Basheer ◽  
Amjad A. Shaikh ◽  
Eid M. Al-Mutairi ◽  
Mokhtar Noor El Deen ◽  
Khurram Karim Qureshi

In this study, ultrasonication-assisted calcium carbonate scale inhibition was investigated compared with a commercial antiscalant ATMP (amino tris(methyl phosphonic acid)). The effects of varying ultrasound amplitude, pH, and inhibition duration were evaluated. The inhibition of calcium carbonate scale formation was measured based on the concentration of calcium in the solution after subjecting to different conditions. Scale deposits were also characterized using scanning electron microscopy and X-ray diffraction spectroscopy. Inhibition of scale formation was supported at a pH of 7 for an ultrasound amplitude of 150 W. A 94% calcium carbonate inhibition was recorded when the experiment was carried out with ultrasonication. The use of 5 mg/L ATMP achieved a 90% calcium carbonate inhibition of ATMP. The result of the characterization revealed that the morphology of the crystals was unaffected by ultrasonic irradiation. Sample treatment was performed with two different membranes to evaluate the calcium carbonate deposition, and data reveals that, at identical conditions, ultrasonication provides less deposition when compared to the control experiments.


2014 ◽  
Vol 70 (6) ◽  
pp. 1074-1082 ◽  
Author(s):  
Ju-Dong Zhao ◽  
Zhi-An Liu ◽  
Er-Jun Zhao

Research on scale inhibition is of importance to improve the heat transfer efficiency of heat exchangers. The combined effect of high voltage electrostatic and variable frequency pulsed electromagnetic fields on calcium carbonate precipitation was investigated, both theoretically and experimentally. Using energy dispersive spectrum analysis, the predominant phase was found to be CaCO3. The formed crystal phases mainly consist of calcite and aragonite, which is, in part, verified by theory. The results indicate that the setting of water flow velocity, and high voltage electrostatic and variable frequency pulsed electromagnetic fields is very important. Favorable values of these parameters can have a significant anti-scaling effect, with 68.95% of anti-scaling ratio for scale sample 13, while unfavorable values do not affect scale inhibition, but rather promoted fouling, such as scale sample 6. By using scanning electron microscopy analysis, when the anti-scaling ratio is positive, the particle size of scale was found to become smaller than that of untreated sample and the morphology became loose. The X-ray diffraction results verify that the good combined effect favors the appearance and growth of aragonite and restrains its transition to calcite. The mechanism for scale reduction is discussed.


2021 ◽  
Vol 210 ◽  
pp. 91-102
Author(s):  
Kun Sheng ◽  
Yanfang Song ◽  
Fang Ge ◽  
Xin Huang ◽  
Yi Zhang ◽  
...  

2014 ◽  
Vol 34 (8) ◽  
pp. 733-738
Author(s):  
Fu Chen ◽  
Keying Wu ◽  
Yangyang Liu ◽  
Huaping Huang ◽  
Kunyi He

Abstract Polyaminoamide dendrimers (PAMAM) surface-modified with anionic terminal groups (PIY) for use as scale inhibitors were prepared with the fourth-generation PAMAM and sodium acrylate (SAA), via the Michael addition reaction. The chemical structures of PIY were determined using Fourier transform infrared (FT-IR) spectrometry and 1H nuclear magnetic resonance (NMR) spectra. The influence of scale inhibitor concentration, Ca2+ concentration and bath temperature on the scale inhibition efficiency was researched. The study results signified that PIY can resist calcium carbonate scale as high as 92.8%. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) patterns showed that amorphous calcium carbonate had generated in the presence of PIY dendrimers.


2020 ◽  
Vol 12 (2) ◽  
pp. 198-206
Author(s):  
S. S. Barkade ◽  
P. G. Bansod ◽  
V. R. Doss ◽  
S. P. Mardikar

The performance of heat exchangers and water cooling systems is mainly affected by the major problem of calcium carbonate/sulphate based scale formation. Herein present paper, we are reporting synthesis, characterization and performance of novel aspartic-co-glutamic acid based polymer system as a green antiscalant. Aspartic-co-glutamic acid based polymer was developed using aspartic acid and glutamic acid as reactants and phosphoric acid as catalyst. Effect of different operating parameters viz. temperature, molar concentration of reactants, reaction time, etc. was studied thoroughly. The as-synthesized material was characterized by various physicochemical characterization techniques including fourier transform-Infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD) spectroscopy. The scale inhibition properties of the as-synthesised product were studied with respect to calcium carbonate at various pH and temperature range. Experimental results unveil that at 200 ppm concentration, the anti-scaling property of the as-synthesized material was found to be close to that of commercial antiscalant (KT-RO).


2021 ◽  
Author(s):  
Kevin Spicka ◽  
Lisa Holding Eagle ◽  
Chris Longie ◽  
Kyle Dahlgren ◽  
AJ Gerbino ◽  
...  

Abstract The Bakken formation is well known for producing brine very high in total dissolved solids (TDS). Halite, calcium carbonate, and barium sulfate scales all can pose substantial production challenges. Trademarks of Bakken produced brine include elevated concentrations of sodium (>90,000 mg/L), chloride (>200,000 mg/L), and calcium (>30,000 mg/L), contrasted against low concentration of bicarbonate (50-500 mg/L). In the past 3 years, operators have experienced unexpected instances of severe calcium carbonate scale on surface where produced fluids from the production tubing commingled with the gas produced up the casing. Initially treated as one-off scale deposits despite the application of scale inhibitor, acid remediation jobs or surface line replacement were typical solutions. As time has passed, this issue has become more and more prevalent across the Bakken. Investigation of this surface issue discovered a most unexpected culprit: a low TDS, high alkalinity brine (up to 92,000 mg/L alkalinity measured to date) produced up the casing with the gas. When mixing with the high calcium brine typically produced in the Bakken, the resulting incompatibility posed remarkable scale control challenges. The uniqueness of this challenge required thorough analytical work to confirm the species and concentrations of the dissolved ions in the brine produced with the gas. Scale control products were tested to evaluate their abilities and limitations regarding adequate control of this massive incompatibility. The theory that corrosion contributed to this situation has been supported by a unique modelling approach. Once corrosion was identified as the likely source of the high alkalinity brine, corrosion programs were instituted to help address the surface scaling. This paper highlights the evaluations conducted to fully grasp the severity of the incompatibility, the theories put forth to date, work conducted to try to replicate the phenomena in the lab and in models, and chemical programs used in the field to address corrosion and scale. While not known to exist in other oilfield basins, conventional or unconventional, this discovery may have implications for the broader industry if similar situations occur. The possible explanations for why this may be happening may have implications for scale control, asset integrity, and potentially even the methods by which wells are produced.


Desalination ◽  
2007 ◽  
Vol 217 (1-3) ◽  
pp. 85-92 ◽  
Author(s):  
E. López-Sandoval ◽  
C. Vázquez-López ◽  
B.E. Zendejas-Leal ◽  
G. Ramos ◽  
E. San Martín-Martínez ◽  
...  

2010 ◽  
Vol 96 ◽  
pp. 35-40 ◽  
Author(s):  
Yan Ding ◽  
Jun Ping Meng ◽  
Xu Hong Zhang ◽  
Li Juan Wang ◽  
Qing Guo Tang

Multiple copper-zinc alloy was used to treat water in order to restrict the formation of hard scale during heating process. Trace amounts of metal ions were dissolved from the alloy under the action of tiny battery corrosion, which took part in the crystallization of calcium carbonate crystal. The ion migration rules and its effect on the crystal structure of water scale were studied. The ICP test results show that after immersion in the water for 20 min, the zinc ion concentration increased to 0.35 mg•L-1 compared with contrast group. The simulating experiment of the scale crystal growth demonstrated that the calcium carbonate scale after treated with the alloy showed a transformation from calcite to aragonite, and the ratio of calcite to aragonite changed from 1:0.125 to 1:2.30. Meanwhile, the heat transfer efficiency was increased to 2.19%.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Sung-Wook Yun ◽  
Chan Yu

Decades of mining in South Korea have resulted in the contamination of large amounts of soil by metals. The most feasible approach to site restoration requires the use of a stabilization agent to reduce metal mobility. This study examined the leaching characteristics of limestone used as a stabilization agent when subjected to solutions of differing pH. In a laboratory-scale column test, solutions with pH values of 3.5, 4.6, and 5.6, representing acidic to nonacidic rainfall, were applied to soil mixed with limestone. Test results indicate that metal components can be released with the addition of acidic solutions, even if the soil is highly alkaline. Cd and Zn, in particular, exhibited abrupt or continuous leaching when exposed to acid solutions, indicating the potential for contamination of water systems as metal-laden soils are exposed to the slightly acidic rainfall typical of South Korea. Treatment using stabilization agents such as limestone may reduce leaching of metals from the contaminated soil. Stabilizing metal-contaminated farmland is an economical and feasible way to reduce pollutants around abandoned metal mines.


2013 ◽  
Vol 423-426 ◽  
pp. 404-407
Author(s):  
Zhen Fa Liu ◽  
Hao Lin Fu ◽  
Li Hui Zhang ◽  
Yan He Zhang ◽  
Xuan Liu

A copolymer was prepared from itaconic acid (IA) and sodium allysulfonate (SAS). The structure of the IA/SAS copolymer was characterized by the means of FTIR. The performances of scale inhibition, dispersion and biodegradability of the IA/SAS copolymer were studied. The results showed that the IA/SAS copolymer had good scale inhibition and dispersing performance. The scale inhibition rate on calcium carbonate was 93% when the copolymer was 20 mg·L-1. The scale inhibition rate on calcium phosphate was 92% when the copolymer was 24 mg·L-1. The copolymer had good biodegradation performance and biodegradation rate could reach 69.5% after 28 days.


Sign in / Sign up

Export Citation Format

Share Document