Mechanical Milling Prepared Nano-Sized Al2O3 Particles Utilized in Electroless Plating Ni-P- Al2O3 Composite Coatings

2012 ◽  
Vol 602-604 ◽  
pp. 1700-1705 ◽  
Author(s):  
Ai Zhi Yu ◽  
Mao Dong Li ◽  
Jin Mei Lin ◽  
Shu Kuan Zhang

In this paper, nano-sized Al2O3 particles were prepared by mechanical milling, and Ni-P-Al2O3 composite coatings were plated on Q235 steel substrates, which plating solutions were containing different concentrations Al2O3 particles. The morphology, phase and particle size distribution of the as-prepared Al2O3 particles, and the properties of the coatings were investigated. The results show that, the morphology of the as-prepared Al2O3 particles were spherical and almost size under 100nm, the coatings were uniformly thickness and the Al2O3 particles were uniformly dispersed in the coatings, after heat treatment, the micro-hardness and wear resistance of the coatings were significantly improved, compared with the chemical method prepared Al2O3 particles, the mechanical method prepared Al2O3 particles had the same performance in improving the micro-hardness of the coatings.

2013 ◽  
Vol 395-396 ◽  
pp. 755-758
Author(s):  
Ai Zhi Yu ◽  
Lian Wang ◽  
Mao Dong Li ◽  
Jin Mei Lin ◽  
Wen Yu

In this paper, ultrafine Al2O3 particles were prepared by mechanical milling, and Ni-P-Al2O3 composite coatings were plated on Q235 steel substrates by brush-plating, which plating solutions were containing different concentrations Al2O3 particles. The morphology, phase and particle size distribution of the as-prepared Al2O3 particles, and the properties of the coatings after heat treatment were investigated. The results show that, the morphology of the as-prepared Al2O3 particles were spherical and almost size under 200nm, the coatings were uniformly thickness and the Al2O3 particles were uniformly dispersed in the coatings. Heat treatment could improve the performances of the brush-plating Ni-P-Al2O3 layers. After 1 hour heat treatment in 400°C, the layer which phosphoric content about 2.3wt% had high rigidity, good abrasion-resistance and adhesion strength, and the layer which phosphoric content about 10.1wt% has good erosion-resistance after 1h heat treatment in 600°C.


2014 ◽  
Vol 988 ◽  
pp. 117-120
Author(s):  
Ya Min Li ◽  
Xing Zhang ◽  
Amin Wang ◽  
Hong Jun Liu

Ni-P-SiC composite coatings on the surface of ZL102 aluminum alloy were prepared by direct electroless plating. The structure and morphology of the coatings after heat treatment at 400 °C for 1 hour were analyzed by XRD and SEM. The bonding strength, hardness, corrosion resistance and wear resistance of the coatings were tested. The results show that the coatings structure is crystalline and the main crystal phase is Ni3P. The SiC particles are evenly distributed in the coatings. The coatings have uniform thickness, high bonding strength and high micro hardness (up to 1395.28 HV.2). It is also shown that the substrate corrosion resistance and wear resistance can be considerably improved after electroless plating.


2008 ◽  
Vol 35 (4) ◽  
pp. 610-614 ◽  
Author(s):  
郑晓华 Zheng Xiaohua ◽  
宋仁国 Song Renguo ◽  
姚建华 Yao Jianhua

2021 ◽  
Vol 857 ◽  
pp. 158221
Author(s):  
Yu-duo Ma ◽  
Wei Li ◽  
Ming-yan Guo ◽  
Yong Yang ◽  
Yu-hang Cui ◽  
...  

2007 ◽  
Vol 280-283 ◽  
pp. 1489-1492
Author(s):  
Zhen Ting Wang ◽  
Hua Hui Chen

Micro-nanostructured WC composite coatings were successfully fabricated by induced heating sintering method on the surface of Q235 steel .The microstructure, micro-hardness and the wear resistance of the composite coatings were studied .The results show that the microstructure of induced heat layer is mainly composed of Ni-based solid solutions and WC particles. And there exists excellent metallurgical bonding between coating and substrate. The wear resistance of micro-nanostructured WC Composite Coatings is increased by 1.5 times on an average as compared with that of micron.


Author(s):  
T.A. Krylova ◽  
◽  
Y.A. Chumakov ◽  

The effect of heat treatment on the structure and properties of composite coatings based on chromium carbide with titanium carbide fabricated by non-vacuum electron beam cladding without has been studied. It was shown that tempering leads to a decrease in microhardness and wear resistance, which is associated with the decomposition of the austenitic structure with the formation of a soft ferrite-carbide structure. The post heat treatment tempering was showed to decrease of microhardness and wear resistance, which leads to the decomposition of the austenitic structure with the formation of a soft ferrite-carbide structure. The bulk quenching of coatings after tempering leads to an increase in microhardness comparable to the values of microhardness in the initial state after electron beam cladding, due to the formation of high hard martensite. The wear resistance of composite coatings after tempering is lower than after cladding due to brittle martensite, which is not able to hold solid carbide particles. The composite coatings obtained at the optimal processing conditions have a combination of improved properties and do not require additional heat treatment, resulting in structural changes, causing a decrease in mechanical properties.


2012 ◽  
Vol 19 (02) ◽  
pp. 1250009 ◽  
Author(s):  
PENG LIU ◽  
WEI GUO ◽  
DAKUI HU ◽  
HUI LUO ◽  
YUANBIN ZHANG

The synthesis of hard composite coating on titanium alloy by laser cladding of Al/Fe/Ni+C/Si3N4 pre-placed powders has been investigated in detail. SEM result indicated that a composite coating with metallurgical joint to the substrate was formed. XRD result indicated that the composite coating mainly consisted of γ- (Fe, Ni) , FeAl , Ti3Al , TiC , TiNi , TiC0.3N0.7 , Ti2N , SiC , Ti5Si3 and TiNi . Compared with Ti-3Al-2V substrate, an improvement of the micro-hardness and the wear resistance was observed for this composite coating.


Sign in / Sign up

Export Citation Format

Share Document