Numerical Simulation and Online Window Monitoring of SPR Process

2012 ◽  
Vol 602-604 ◽  
pp. 1765-1768 ◽  
Author(s):  
Xiao Cong He ◽  
Yue Bo Hu ◽  
Bao Ying Xing ◽  
Yan Fang Ding ◽  
Kai Zeng

The need to create lighter vehicles to aid in reducing emissions and increase fuel efficiency has become increasingly important in recent years. Self-pierce riveting (SPR) has drawn more attention as it can join some advanced materials that are dissimilar and hard to weld. In present study, the SPR process has been numerically simulated using the commercial finite element (FE) software LS-Dyna. For validating the numerical simulation of the SPR process, experimental tests on specimens made of aluminium alloy have been carried out. The online window monitoring technique was used in the tests for evaluating the quality of SPR joints. Good agreements between the simulations and the tests have been found, both with respect to the force-travel curves as well as the deformed shape on the cross-section of SPR joint.

2016 ◽  
Vol 879 ◽  
pp. 274-278 ◽  
Author(s):  
Jun Cao ◽  
Philip Nash

In an earlier study, a 3-D thermomechanical coupled finite element model was built and experimentally validated to investigate the evolution of the thermal residual stresses and distortions in electron beam additive manufactured Ti-6Al-4V build plates. In this study, an investigation using this robust and accurate model was focused on an efficient preheating method, in which the electron beam quickly scanned across the substrate to preheat the build plate prior to the deposition. Various preheat times, beam powers, scan rates, scanning paths and cooling times (between the end of current preheat scan/deposition layer and the beginning of the next preheat scan/deposition layer) were examined, and the maximum distortion along the centerline of the substrate and the maximum longitudinal residual stress along the normal direction on the middle cross-section of the build plate were quantitatively compared. The results show that increasing preheat times and beam powers could effectively reduce both distortion and residual stress for multiple layers/passes components.


2021 ◽  
Vol 11 (9) ◽  
pp. 4272
Author(s):  
Stefano Invernizzi ◽  
Francesco Montagnoli ◽  
Alberto Carpinteri

The present paper investigates the influence of the specimen size of EN-AW6082 wrought aluminium alloy subjected to very high cycle fatigue (VHCF) tests. The hourglass specimens were tested under fully reversed loading condition, up to 109 cycles, by means of the ultrasonic fatigue testing machine developed by Italsigma® (Italy). Three specimens groups were considered, with a diameter in the middle cross-section ranging from 3 mm up to 12 mm. The stress field in the specimens was determined numerically and by strain gauge measurements in correspondence of the cross-section surface. The dispersion of experimental results has been accounted for, and data are reported in P-S-N diagrams. The decrease in fatigue resistance with increasing specimen size is evident. Theoretical explanation for the observed specimen-size effect is provided, based on Fractal Geometry concepts, allowing to obtain scale independent P-S*-N curves. The fatigue life expectation in the VHCF regime of the EN-AW6082 aluminium alloy full-scale components is rather overestimated if it is assessed only from standard small specimens of 3 mm in diameter. Experimental tests carried out on larger specimens, and a proper extrapolation, are required to assure safe structural design.


2019 ◽  
Vol 8 (4) ◽  
pp. 2656-2661

The design of the Gravity retaining wall (GRW) is a trial and error process. Prevailing conditions of backfill are used to determine the profile of GRW, which proceeds with the selection of provisional dimensions. The optimum section is having factors of safety of stability higher than the allowable values and stresses in the cross-section smaller than permissible. The cross-section is designed to fulfill conditions of stability, subjected to very low stresses. The strength of the material, which is provided in the cross-section remains unutilized. A computer program is developed to find stresses at various locations on the cross-section of GRW using the Finite Element Method (FEM). A discontinuity in the form of a rectangular cavity is introduced in the cross-section of GRW to optimize it. The rectangular cavity is introduced in the cross-section of GRW at different locations. An attempt is made in this paper to find the stress distribution in the gravity retaining wall cross-section and to study the effect of the rectangular cavity on the stress distribution. Two cases representing different locations are considered to study the effect of the cavity. The location of the cavity is distinguished by the parameter w, the effects of cases with varied was 0.2305 (Case-I) and 0.1385 (Case-II) are observed. The cavity, which is provided not only makes the wall structurally efficient but also economically feasible.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5536
Author(s):  
David Curto-Cárdenas ◽  
Jose Calaf-Chica ◽  
Pedro Miguel Bravo Díez ◽  
Mónica Preciado Calzada ◽  
Maria-Jose Garcia-Tarrago

Cold expansion technology is an extended method used in aeronautics to increase fatigue life of holes and hence extending inspection intervals. During the cold expansion process, a mechanical mandrel is forced to pass along the hole generating compressive residual hoop stresses. The most widely accepted geometry for this mandrel is the tapered one and simpler options like balls have generally been rejected based on the non-conforming residual hoop stresses derived from their use. In this investigation a novelty process using multiple balls with incremental interference, instead of a single one, was simulated. Experimental tests were performed to validate the finite element method (FEM) models and residual hoop stresses from multiple balls simulation were compared with one ball and tapered mandrel simulations. Results showed that the use of three incremental balls significantly reduced the magnitude of non-conforming residual hoop stresses and the extension of these detrimental zone.


2014 ◽  
Vol 722 ◽  
pp. 140-146
Author(s):  
Wen Juan Zhang ◽  
Long Wu ◽  
Gang Chen

In this paper the drawing process of Box-torque was simulated by Dynaform, which is FEM simulation software. The process parameters, which affected the quality of forming, were optimized by finite element simulation. The emphasis was focus on the optimization of draw-bead and BHF and data were summarized from the optimization graphs. In this simulation, lengthways draw-bead was set on the technical face for reducing or eliminating wrinkle. It was innovation difference from the usual that the draw-bead was set on binder. Finally the correctness of simulation was approved by comparing the optimization of simulation with the data of experimentation.


2016 ◽  
Vol 254 ◽  
pp. 272-277
Author(s):  
Monica Iordache ◽  
Claudiu Bădulescu ◽  
Eduard Niţu ◽  
Doina Iacomi

. Simulation of the FSW process is a complex issue, as it implies interactions between thermal and mechanical phenomena and the quality of the welding depends on many factors. In order to reduce the time of the experimental tests, which can be long and expensive, numerical simulation of the FSW process has been tried during the last ten years. However, there still remain aspects that cannot be completely simulated. In this paper the authors present the steps of the numerical simulation using the finite elements method, in order to evaluate the boundary conditions of the model and the geometry of the tools by using the Arbitrary Lagrangian Eulerian (ALE) adaptive mesh controls.


2016 ◽  
Vol 08 (02) ◽  
pp. 1650026 ◽  
Author(s):  
Gaetano Giunta ◽  
Salim Belouettar ◽  
Olivier Polit ◽  
Laurent Gallimard ◽  
Philippe Vidal ◽  
...  

A family of hierarchical one-dimensional beam finite elements developed within a variables separation framework is presented. A Proper Generalized Decomposition (PGD) is used to divide the global three-dimensional problem into two coupled ones: one defined on the cross-section space (beam modeling kinematic approximation) and one belonging to the axis space (finite element solution). The displacements over the cross-section are approximated via a Unified Formulation (UF). A Lagrangian approximation is used along the beam axis. The resulting problems size is smaller than that of the classical equivalent finite element solution. The approach is, then, particularly attractive for higher-order beam models and refined axial meshes. The numerical investigations show that the proposed method yields accurate yet computationally affordable three-dimensional displacement and stress fields solutions.


Sign in / Sign up

Export Citation Format

Share Document