Investigation on Forming Process of Automobile Trunk Side Panel Based on Numerical Simulation Technology

2013 ◽  
Vol 634-638 ◽  
pp. 2855-2860
Author(s):  
Hai Peng Li ◽  
Jia Wei Fan ◽  
Li Hui Wang ◽  
Xue Xia Wang ◽  
Ju Yuan Zhao

The forming process of automobile trunk side panel was investigated, using numerical simulation technology, to acquire the feasible process parameters and improve the formability of the product. With the technology, the manufacturability working procedures and drawing process parameters of the product were analyzed, calculated and simulated to achieve optimum formability characteristics. The method effectively lowers the probability of springback, wrinkling and thickness reduction, and shortens design cycle and cost. Based on the simulation results including forming limit diagram and thickness distribution diagram, the feasible process parameters are determined.

2013 ◽  
Vol 442 ◽  
pp. 593-598
Author(s):  
Xue Xia Wang ◽  
Peng Chong Guan ◽  
Hai Peng Li ◽  
Li Hui Wang ◽  
Na Zhang ◽  
...  

Flanging and bending forming processes of the crossmember in car intermediate floor are investigated respectively by using numerical simulation technology. The numerical model of the crossmember was established and its press forming effect was simulated to determine the feasible process parameters affecting its manufacturability. Forming limit diagram and thickness distribution diagram are used to evaluate simulation results of different process schemes. And then optimum values of process parameters for flanging and bending are found, which can reduce the tendencies of wrinkling, springback and crackling during the stamping of the product.


2012 ◽  
Vol 268-270 ◽  
pp. 458-463
Author(s):  
Hai Peng Li ◽  
Xue Xia Wang ◽  
Li Hui Wang ◽  
Jia Wei Fan ◽  
Ju Yuan Zhao

This paper presents a methodology to design optimal forming process parameters of the sleeper fixed reinforcing plate based on the use of computer aided engineering (CAE) technology. The methodology uses Unigraphics software to establish the numerical model and DYNAFORM software to simulate its sheet forming process to determine the feasible process parameters affecting its manufacturability, including whether the mould requires the binder, binder force, friction coefficient, and die fillet radius. The forming limit diagram and the thickness distribution diagram are selected to appraise and analyze the forming results. The orthogonal experiment method is adopted to simulate the design parameters to find out the optimum values for mould design.


2014 ◽  
Vol 543-547 ◽  
pp. 337-343
Author(s):  
Peng Chong Guan ◽  
Jia Wei Fan ◽  
Li Hui Wang ◽  
Hai Peng Li ◽  
Na Zhang ◽  
...  

A methodology to design optimal forming process and relative parameters of the automobile front panel reinforcing plate, using the numerical simulation technology of forming sheet metal, is investigated. The digital model of the complex automobile part is established by computer aided design software. Dynaform software is used to simulate its forming process to acquire the feasible process parameters affecting its formability. Forming limit diagram and thickness distribution diagram are used to evaluate the simulation results of different process schemes. The orthogonal experiment method is adopted to design and simulate the process parameters to find out the optimum values for die design. The reasonable process design and optimum values of fillet radius of female die, friction coefficient and blank-holder force are obtained, which can reduce the tendencies of wrinkling, crackling and thickness reduction, and achieve sufficient plastic deformation of blank.


2006 ◽  
Vol 510-511 ◽  
pp. 330-333
Author(s):  
M.C. Curiel ◽  
Ho Sung Aum ◽  
Joaquín Lira-Olivares

Numerical simulations based on Finite Element Analysis (FEA) are widely used to predict and evaluate the forming parameters before performing the physical processes. In the sheet metal industry, there are basically two types of FE programs: the inverse (one-step) programs and the incremental programs. In the present paper, the forming process of the shield case piece (LTA260W1-L05) was optimized by performing simulations with both types of software. The main analyzed parameter was the blankholding force while the rest of the parameters were kept constant. The criteria used to determine the optimum value was based on the Forming Limit Diagram (FLD), fracture and wrinkling of the material, thickness distribution, and the principal strains obtained. It was found that the holding force during the forming process deeply affects the results, and a range of values was established in which the process is assumed to give a good quality piece.


2011 ◽  
Vol 55-57 ◽  
pp. 2104-2108
Author(s):  
Xiao Chun Ma ◽  
Wei Bing Shen ◽  
Yi Qiang Zhuang

This paper is concerned with the quantitative effect of design parameters on the stamping process of automobile crossbeam. The considered parameters in this paper are the friction coefficient, the die fillet radius and the blank holding force, which greatly affect the metal flow during stamping. Based on the finite element numerical simulation, the stamping shaped process of the automobile crossbeam is numerical simulated with the explicit finite element method with various parameters by dint of Dynaform software. According to the simulation results, the forming limit diagram(FLD) and the wall thickness distribution of cloud on the stamping processes are technologically analyzed, the reasons and control methods of wrinkling are also pointed out, and then the optimal parameter combination of the automobile crossbeam is obtained by orthogonal experiments. It is noted that the parametric study of design parameters such as µ , BHF and RD are very important in the process design of the complicated member.


2011 ◽  
Vol 189-193 ◽  
pp. 88-91
Author(s):  
Jun Gao ◽  
Zhen Ming Yue ◽  
Shu Xia Lin

Magnesium alloys have been attracting much more attentions due to its low density, high specific strength and its lightweight during the past 30 years. In this paper, the deep drawing performance of AZ31B magnisium alloy sheets at elevated temperature was studied by the experimental approach. The results indicated that the formability of the AZ31B sheets at elevated temperatures could be improved significantly. The best external forming parameters can be obtained such as heating temperature of sheet, die-punch clearance, punch fillet radius, etc. Simulating the forming process by using the numerical simulation software, we investigated the stress-strain distribution, thickness distribution and forming limit, etc. The thickness distribution by the numerical simulation agrees well with the experimental results.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Payam Tayebi ◽  
Ali Fazli ◽  
Parviz Asadi ◽  
Mahdi Soltanpour

AbstractIn this study, in order to obtain the maximum possible formability in tailor-welded blank AA6061 sheets connected by the friction stir welding (FSW) procedure, the incremental sheet forming process has been utilized. The results are presented both numerically and experimentally. To obtain the forming limit angle, the base and FSWed sheets were formed in different angles with conical geometry, and ultimately, the forming limit angle for the base metal and FSWed sheet is estimated to be 60° and 57.5°, respectively. To explore the effects of welding and forming procedures on AA6061 sheets, experimental studies such as mechanical properties, microstructure and fracture analysis are carried out on the samples. Also, the thickness distribution of the samples is studied to investigate the effect of the welding process on the thickness distribution. Then, the numerical process was simulated by the ABAQUS commercial software to study the causes of the FSWed samples failure through analyzing the thickness distribution parameter, and major and minor strains and the strain distribution. Causes of failure in FSWed samples include increased minor strain, strain distribution and thickness distribution in welded areas, especially in the proximity of the base metal area.


2011 ◽  
Vol 62 ◽  
pp. 21-35 ◽  
Author(s):  
Anis Ben Abdessalem ◽  
A. El Hami

In metal forming processes, different parameters (Material constants, geometric dimensions, loads …) exhibits unavoidable scatter that lead the process unreliable and unstable. In this paper, we interest particularly in tube hydroforming process (THP). This process consists to apply an inner pressure combined to an axial displacement to manufacture the part. During the manufacturing phase, inappropriate choice of the loading paths can lead to failure. Deterministic approaches are unable to optimize the process with taking into account to the uncertainty. In this work, we introduce the Reliability-Based Design Optimization (RBDO) to optimize the process under probabilistic considerations to ensure a high reliability level and stability during the manufacturing phase and avoid the occurrence of such plastic instability. Taking account of the uncertainty offer to the process a high stability associated with a low probability of failure. The definition of the objective function and the probabilistic constraints takes advantages from the Forming Limit Diagram (FLD) and the Forming Limit Stress Diagram (FLSD) used as a failure criterion to detect the occurrence of wrinkling, severe thinning, and necking. A THP is then introduced as an example to illustrate the proposed approach. The results show the robustness and efficiency of RBDO to improve thickness distribution and minimize the risk of potential failure modes.


2010 ◽  
Vol 102-104 ◽  
pp. 232-236 ◽  
Author(s):  
Zhi Feng Liu ◽  
Qi Zhang ◽  
Wen Tong Yang ◽  
Jian Hua Wang ◽  
Yong Sheng Zhao

According to the characteristic which is more and difficult to determine about the automotive panel forming factors, based on the dynamic explicit method, taking the typical automobile front fender for example, do the simulation analysis by using of DYNAFORM. On the premise of taking springback factors into account, analog the best stamping process parameters has been optimized from the analysis results after simulation such as sheet metal forming limited drawing(FLD)and sheet metal thinning drawing.


2011 ◽  
Vol 675-677 ◽  
pp. 921-924 ◽  
Author(s):  
Ming Wei Wang ◽  
Chun Yan Wang ◽  
Li Wen Zhang

Vacuum hot bulge forming (VHBF) is becoming an increasingly important manufacturing process for titanium alloy cylindrical workpiece in the aerospace industries. Finite element simulation is an essential tool for the specification of process parameters. In this paper, a two-dimensional nonlinear thermo-mechanical couple FE model was established. Numerical simulation of vacuum hot bulge forming of titanium alloy cylindrical workpiece was carried out using FE analysis software MSC.Marc. The effects of process parameter on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece was analyzed by numerical simulation. The proposed an optimized vacuum hot bulge forming process parameters and die size. And the corresponding experiments were carried out. The simulated results agreed well with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document