Microstructure and Corrosion Behavior of Laser Cladding Al3Ti-Based Composite Coatings on AA6063 Aluminum Alloy

2013 ◽  
Vol 634-638 ◽  
pp. 2973-2978 ◽  
Author(s):  
Huan He ◽  
Yue Chun Fu ◽  
Wei Hua Guo ◽  
Min Xiao ◽  
Xing Zhi Pang ◽  
...  

Intermetallic compound Al3Ti-based IMC coatings were formed on AA6063 aluminum alloy by laser cladding. The microstructure and corrosion characteristics in 3.5% NaCl solution were investigated. The results show that, the laser cladding coating is made up of Al3Ti dendrites, interdendritic α-Al and uniform distribution of TiC which hardly melted during laser irradiation, and shows good bonding to the substrate. The cross distribution of Al3Ti and α-Al helps to avoid the generation of cracks in the coating. The corrosion resistance of the laser cladding coatings is greatly increased as compared with the substrate, which owes mainly to the existence of hard Al3Ti and TiC. And with the increasing of TiC content in the coating, the corrosion resistance is improved simultaneously.

2013 ◽  
Vol 652-654 ◽  
pp. 1897-1903 ◽  
Author(s):  
Huan He ◽  
Wei Hua Guo ◽  
Min Xiao ◽  
Xing Zhi Pang ◽  
Xiao Ming Shen ◽  
...  

Al3Ti-based intermetallic compound coatings were formed on AA6063 aluminum alloy by laser cladding. The microstructure, wear and corrosion behaviors were investigated. The results showed that, the laser cladding coatings were made up of Al3Ti dendrites, interdendritic α-Al and uniform distribution of TiC particles, and showed good bonding to the substrate. The microhardness, wear and corrosion resistances of the laser cladding coatings greatly increased compared to the substrate. And with the addition of TiC particles to the coating, the superficial properties are improved simultaneously.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 549 ◽  
Author(s):  
Zihan Chen ◽  
Chonggao Bao ◽  
Guoqing Wu ◽  
Yongxin Jian ◽  
Li Zhang

The strength of Mg–Li alloy is greatly improved by the composite strengthening of intermetallic compound YAl2 particles, but the low corrosion resistance of Mg–Li alloy is still the main factor that restricts the application of the alloy and its composites. In this paper, the effect of YAl2 particles on the corrosion behavior of Mg–Li alloy was systematically investigated. The results showed that the corrosion resistance of YAl2p/LA143 composite could be significantly improved, accounting for the formation of a transitional interface layer by adding YAl2 particles. The diffusion of yttrium and aluminum atoms from YAl2 particulates improved the stability of the surface film and enhanced the adhesion between the corrosion products and the substrate, which hindered further expansion of pitting.


2011 ◽  
Vol 179-180 ◽  
pp. 757-761 ◽  
Author(s):  
Kai Jin Huang ◽  
Hou Guang Liu ◽  
Chang Rong Zhou

To improve the corrosion property of magnesium alloys, Zr-based amorphous composite coatings have been fabricated on AZ91D magnesium alloy by laser cladding using mixed powders Zr55Al10Ni5Cu30/SiC. The microstructure of the coating was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The corrosion resistance of the coatings was tested in 3.5wt.% NaCl solution. The results show that the coatings mainly consist of amorphous and different crystalline phases. The coatings compared with AZ91D magnesium alloy exhibit good corrosion resistance because of the presence of the amorphous phase in the coatings.


2021 ◽  
Vol 1035 ◽  
pp. 554-561
Author(s):  
Li Juan Zhu ◽  
Chun Feng ◽  
Ya Chong Song ◽  
Ya Qiong Cao ◽  
Li Hong Han ◽  
...  

Epoxy coatings and Reduced Graphene Oxide (RGO) modified epoxy coatings were prepared on N80 tubing steel. The influence of temperature on the corrosion resistance of RGO modified epoxy coatings was studied. And the corrosion behavior of epoxy coatings and RGO modified epoxy coatings in 10.0 wt% NaCl solution at different temperatures was compared. The results showed that the corrosion resistance of both coatings decreased with the increase of temperature. However, the corrosion resistance of RGO modified epoxy coating was two to three orders of magnitude higher than that of epoxy coating at different test temperature. The addition of RGO nanosheets greatly enhanced the corrosion resistance of epoxy composite coatings in 10.0 wt% NaCl solution at high temperature due to their high impermeability and negative coefficient of thermal expansion.


2010 ◽  
Vol 143-144 ◽  
pp. 758-762
Author(s):  
Kai Jin Huang ◽  
Hou Guang Liu ◽  
Chang Rong Zhou

To improve the corrosion property of magnesium alloys, Mg-based amorphous composite coatings have been fabricated on AZ91D magnesium alloy by laser cladding using mixed powders Mg65Cu25Y10/SiC. The microstructure of the coating was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The corrosion resistance of the coatings was tested in 3.5wt.% NaCl solution. The results show that the coatings mainly consist of amorphous and different crystalline phases. The coatings compared to AZ91D magnesium alloy exhibit good corrosion resistance because of the presence of the amorphous phase in the coatings.


2015 ◽  
Vol 1090 ◽  
pp. 79-83
Author(s):  
Yan Hong He ◽  
Zhen Duo Cui ◽  
Xian Jin Yang ◽  
Sheng Li Zhu ◽  
Zhao Yang Li ◽  
...  

In this paper, Pd ions doped cerium conversion coating (CeCC/Pd) was deposited on AA2219-T87 aluminum alloy by electroplating. The microstructure and composition of the coating were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS). Corrosion behavior of AA2219-T87 aluminum alloy with the coating was investigated in 3.5wt.% NaCl solution at the room temperature. XRD and XPS results indicate the existence of cerium-oxide and palladium-oxide in the CeCC/Pd. Polarization curves show that the CeCC/Pd exhibits excellent corrosion resistance. The corrosion current density of the CeCC/Pd decreases by two orders of magnitude compared with the CeCC. The improvement of corrosion resistance would be attributed to the small grain size, good compactness and adhesive strength of the composite coatings.


2020 ◽  
Vol 67 (2) ◽  
pp. 178-186
Author(s):  
R.G. Song ◽  
T.S. Hua ◽  
Y. Zong ◽  
S.W. Cai

Purpose This paper aims to study the effect of Micro-arc oxidation (MAO) coating on stress corrosion and electrochemical behavior of aluminum alloy. Design/methodology/approach The stress corrosion cracking behavior of 7050 aluminum alloy (AA7050) after MAO treatment was investigated in 3.5 Wt.% NaCl solution using the constant load ring. Electrochemical impedance spectroscopy (EIS) was used to evaluate the change of corrosion resistance of MAO specimens in 3.5  Wt.% NaCl solution, and appropriate equivalent circuits were established. Findings The results demonstrated that the MAO coating can improve the corrosion resistance of the AA7050 and avoid the reduction of mechanical properties caused by corrosion. In the initial stage of corrosion, the corrosion resistance of coated specimen decreased at first and then increased. In the middle and final stage of corrosion, the corrosion resistance of coated specimen decreased at first and then stabilized. Originality/value The long-term corrosion behavior of MAO specimens under stress was studied by constant load experiment and EIS. It has guiding significance for the application of MAO technology on aluminum alloy.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Fangxia Ye ◽  
Wenxuan Shao ◽  
Xuchao Ye ◽  
Mingxia Liu ◽  
Yanxiang Xie ◽  
...  

Laser-cladding CeO2-doped Ni-based composite coatings were prepared on the surface of a titanium alloy, and the effects of CeO2 addition on the microstructure, microhardness, and corrosion resistance of the prepared coatings were studied. The results showed that TiC, NiTi, Ni3Ti, and Ti2Ni phases were formed on the prepared coatings. Moreover, the addition of CeO2 in laser-cladding coatings effectively refined the microstructure and reduced the number of cracks generated in the laser-cladding process. When the amount of CeO2 was 2%, the number of cracks in the laser-cladding coating was significantly reduced compared with that of 0%. When the content of CeO2 was 2% or 3%, the microhardness of laser-cladding coatings reached the maximum value. At the same time, it was found that the appropriate addition of CeO2 was helpful to improve the corrosion resistance of the laser-cladding coating. However, excessive CeO2 addition could reduce the corrosion resistance of the laser-cladding coating.


2015 ◽  
Vol 30 (6) ◽  
pp. 627
Author(s):  
YE Zuo-Yan ◽  
LIU Dao-Xin ◽  
LI Chong-Yang ◽  
ZHANG Xiao-Hua ◽  
ZANG Xiao-Ming ◽  
...  

Author(s):  
Simona BOICIUC ◽  
◽  
◽  

The undertaken research which is described in this paper aims at the corrosion behaviour of composite coatings in nickel matrix using as dispersed phase technical alumina with dimensions of 5 μm and their characterization from a microstructural point of view. The corrosion resistance in the saline fog of the coatings is influenced by the microstructure, the stresses developed in the layer and the roughness.


Sign in / Sign up

Export Citation Format

Share Document