scholarly journals Effect of Isothermal Aging 2000 Hours on Intermetallics Formed between Ni-Pd-Au with Sn-4Ag-0.5Cu Solders

2013 ◽  
Vol 650 ◽  
pp. 194-199 ◽  
Author(s):  
M.A. Azmah Hanim ◽  
A. Ourdjini ◽  
I. Siti Rabiatul Aisha ◽  
O. Saliza Azlina

The present study investigated the effect of isothermal aging up to 2000 hours on the intermetallics formed between Sn-4Ag-0.5Cu lead free solder on electroless nickel electroless palladium immersion gold surface finish (Ni-Pd-Au). For all parameters, aging have an effect of changing the intermetallic morphology to coarser and dense structure. The intermetallic compound formed for the interconnection of the lead free solder changes with increased aging time from (Cu,Ni)6Sn5 compound to (Ni,Cu)3Sn4. At the end of the 2000 hours aging time, it changes to Ni3Sn4. This is the effect of Cu element availability during the intermetallics growth process. Starting from as reflow process, (Pd, Ni)Sn4 intermetallics formed near the interface of the solder joint. The formation of the (Pd, Ni)Sn4 intermetallics act like a diffusion barrier to slow down the growth of interface intermetallics. Lastly, Au element was detected in the Pd-Sn based intermetallic after aging more than 1000 hours.

2016 ◽  
Vol 2016 (1) ◽  
pp. 000117-000122 ◽  
Author(s):  
Cong Zhao ◽  
Thomas Sanders ◽  
Zhou Hai ◽  
Chaobo Shen ◽  
John L. Evans

Abstract This paper investigates the effect of long term isothermal aging and thermal cycling on the reliability of lead-free solder mixes with different solder compositions, PCB surface finishes, and isothermal aging conditions. A variety of surface mount components are considered, including ball grid arrays (BGAs), quad flat no-lead packages (QFNs) and 2512 Surface Mount Resistors (SMRs). 12 lead-free solder pastes are tested; for BGA packages these are reflowed with lead-free solder spheres of SAC105, SAC305 and matched doped solder spheres (“matched” solder paste and sphere composition). Three surface finishes are tested: Organic Solderability Preservative (OSP), Immersion Silver (ImAg), and Electroless Nickel Immersion Gold (ENIG). All test components are subjected to isothermal aging at 125°C for 0 or 12 months, followed by accelerated thermal cycle testing from −40°C to 125°C. Data from the first 1500 cycles is presented here, with a focus on the effect of surface finish on package reliability. Current results demonstrate that the choice of surface finish has a strong effect on reliability. However, different solder materials appear to show different reliability trends with respect to the surface finishes, and the reliability trends of BGA and SMR packages also diverge.


2012 ◽  
Vol 488-489 ◽  
pp. 1375-1379 ◽  
Author(s):  
O. Saliza Azlina ◽  
A. Ourdjini ◽  
I. Siti Rabiatull Aisha

Due to environmental concern, lead-free solder are taking the place of eutectic Sn-Pb solder in electronic packaging industry. Among various lead free alloys, Sn–Ag–Cu (SAC) alloys are leading lead-free candidate solders for various applications because it is offered better properties. This study investigates the interfacial reactions during reflow soldering and isothermal aging between Sn-3.0Ag-0.5Cu (SAC305) and Sn-3.0Ag-0.5Cu-0.05Ni (SACN30505) on electroless nickel/ immersion palladium/immersion gold (ENEPIG) surface finish. The substrates were subjected to isothermal aging at 125°C for up to 2000 hours with solder size diameter of 500μm. The results indicated that after reflow soldering, (Cu, Ni)6Sn5 IMC is formed between solder and substrate while after aging treatment a new IMC was formed between (Cu, Ni)6Sn5 and substrate known as (Ni, Cu)3Sn4. Moreover, after soldering and isothermal aging, Ni-doped (SACN) solder represents a thicker IMC compared to SAC solder. Aging time of solder joints results in an increase of IMC’s thickness and changes their morphologies to become more spherical, dense and with larger grain size. In addition, the results also revealed that the thickness of intermetallics formed is proportional to the aging duration.


2011 ◽  
Vol 415-417 ◽  
pp. 1181-1185 ◽  
Author(s):  
Osman Saliza Azlina ◽  
Ali Ourdjini ◽  
Siti Rabiatull Aisha Idris ◽  
Mohd Ariff Azmah Hanim

In electronic packaging industry, they are now driven technology to green product by replacing leaded-solder with lead-free solder in order to fulfill the European Restriction of Hazardous Substance (RoHS) compliance. Thus, Sn-Ag-Cu lead-free solder family is one of candidates can fulfill this requirement. This study investigates the interfacial reactions during reflow soldering and isothermal aging between Sn-3.0Ag-0.5Cu (SAC305) and electroless nickel/ immersion palladium/immersion gold (ENEPIG). Reliability of solder joint is also examined by performing solid state isothermal aging at 125°C and 150°C for up to 2000 hours. The results revealed that after reflow soldering, (Cu, Ni)6Sn5 IMC is formed between solder and substrate while after aging treatment another IMC was found between (Cu, Ni)6Sn5 and substrate known as (Ni, Cu)3Sn4. Aging time and temperature of solder joints results in an increase of IMC’s thickness and changes their morphologies to become more spherical, dense and with larger grain size. In addition, the results also revealed that the thickness of intermetallics formed is proportional to the aging duration and temperature.


2007 ◽  
Vol 561-565 ◽  
pp. 2115-2118
Author(s):  
Yun Fu ◽  
Qi Zhang ◽  
Feng Sun ◽  
Hao Yu Bai

The growth and morphology of the intermetallic compounds (IMC) formed at the interface between the solder ( Sn–3.5Ag–0.5Cu ) and the Cu substrate of the lead - free solder joint have been investigated by means of isothermal aging at 125°C. The scalloped Cu6Sn5 intermetallic compound layer was formed at the interface between the solder and Cu substrate upon reflow. The thickness of Cu6Sn5 layer increased with aging time. Cu3Sn appeared between Cu6Sn5 layer and Cu substrate when isothermally aged for 100 hours. Compare to Cu6Sn5 , the thickness of Cu3Sn was rather low, and nearly did not increase with aging time. In this paper, the comparison was made among the Sn-Pb and the Sn-Ag-Cu(SAC) solders which were pre-treated differently before soldering.


2012 ◽  
Author(s):  
Nor Akmal Fadil ◽  
Ali Ourdjini ◽  
Azmah Hanim Mohamed Ariff ◽  
Siti Rabiatul Aisha Idris

Teknologi flip chip memberikan ketumpatan I/O yang sangat tinggi dan mengambil kira prestasi elektrikal yang paling baik dalam penyambungan komponen elektronik. Oleh itu, kajian tentang sebatian antara logam dilaksanakan untuk mengkaji kesan saiz bebola pateri bagi beberapa penyudahan permukaan, iaitu Kuprum dan Nikel tanpa elektrod/Palladium tanpa elektrod/Emas rendaman (ENEPIG). Pelogaman di bawah pateri (UBM) Ni/Pd/Au bagi aplikasi flip chip digunakan dengan sangat meluas dalam pembungkusan elektronik. Analisis FESEM dilakukan untuk menganalisis morfologi dan komposisi bagi sebatian antara logam (IMC). IMC yang terbentuk antara pateri Sn–Pb dan tanpa Pb dengan penyudahan permukaan kuprum semasa proses pematrian logam secara umumnya adalah (Cu, Ni)6Sn5 dan Cu6Sn5 dan Cu6Sn5. Sementara IMC utama yang terbentuk antara pateri Sn–Pb dan tanpa Pb dengan penyudahan permukaan ENEPIG adalah (Ni, Cu)3Sn4 dan Ni3Sn4. Hasil daripada analisis morfologi menggunakan FESEM dengan EDX menyatakan penuaan sesuhu pada suhu 150°C menyebabkan penebalan dan pengasaran struktur IMC serta menjadikan bentuknya kepada lebih sfera. Tebal IMC bagi kedua–dua penyudahan yang dikaji adalah lebih tinggi bagi bebola patri yang lebih kecil. Daripada hasil kajian juga, didapati bahawa kadar pertumbuhan IMC adalah lebih tinggi apabila pematrian dilakukan atas penyudahan kuprum berbanding ENEPIG. Hasil kajian juga menunjukkan ketebalan IMC adalah berkadaran dengan masa penuaan sesuhu. Kata kunci: Flip chip; Kumprum dan Nikel tanpa elektrod; Palladium tanpa elektrod; Emas rendaman (ENEPIG); Pelogaman di bawah pateri (UMB) Ni/Pd/Au Flip chip technology provides the ultimate in high I/O–density and count with superior electrical performance for interconnecting electronic components. Therefore, the study of the intermetallic compounds was conducted to investigate the effect of solder bumps sizes on several surface finishes which are copper and Electroless Nickel/Electroless Palladium/Immersion Gold (ENEPIG) which is widely used in electronics packaging as under–bump metallization (UBM) for flip–chip application nowadays. In this research, field emission scanning electron microscopy (FE–SEM) analyses were conducted to analyze the morphology and composition of intermetallic compounds (IMCs) formed at the interface between the solder and UBM. The IMCs between Sn–Pb and lead–free solder with Cu surface finish during reflowing were mainly (Cu, Ni)6Sn5 dan Cu6Sn5. While the main IMCs formed between Sn–Pb and lead–free solder on ENEPIG surface finish are (Ni, Cu)3Sn4 and Ni3Sn4. The results from FESEM with energy dispersive x–ray (EDX) have revealed that isothermal aging at 150°C has caused the thickening and coarsening of IMCs as well as changing them into more spherical shape. The thickness of the intermetallic compounds in both finishes investigated ware found to be higher in solders with smaller bump size. From the experimental results, it also appears that the growth rate of IMCs is higher when soldering on copper compared to ENEPIG finish. Besides that, the results also showed that the thickness of intermetallic compounds was found to be proportional to isothermal aging duration. Key words: Electroless nickel; electroless palladium; immersion gold (ENEPIG); flip chip; Ni/Pd/Au Under–bump metallization (UMB)


2010 ◽  
Vol 2010 (1) ◽  
pp. 000156-000163
Author(s):  
Weijun Zhou ◽  
Quan Yuan ◽  
Chris Li ◽  
Stephen F. Hahn ◽  
Kurt A. Koppi ◽  
...  

A new class of thermoplastic optical polymers made by substantially fully hydrogenating block copolymers of styrene and butadiene, known as cyclic block copolymers (CBCs), were recently discovered to exhibit lead-free solder reflow resistance with peak reflow temperature up to 260°C. This kind of behavior is uncommon for traditional thermoplastic polymers. The block copolymer design and the resulting nanostructured morphology lead to strong elastic and soft solid material characteristics for CBC, which may explain why CBCs can maintain good dimensional stability at high temperatures (i.e., above its glass transition temperature, Tg) for a short period of time such as in a solder reflow process. This hypothesis was examined by computational fluid dynamics modeling on a molded CBC lens of LUXEON K2 LED package configuration. When the CBC lens is subjected to a simulated solder reflow process, the change in physical dimension due to thermal expansion and gravity effects is predicted to be negligible. However, the residual stress in the molded lens may play a profound role on its dimensional stability. There exists a critical stress value below which no observable deformation is predicted for the CBC lens. With excellent optical transparency and good long term optical stability, low moisture absorption, and good injection moldability, CBCs is a promising class of materials for LED packaging that contributes to improved LED manufacturing economics.


2013 ◽  
Vol 634-638 ◽  
pp. 2800-2803 ◽  
Author(s):  
Li Meng Yin ◽  
Yan Fei Geng ◽  
Zhang Liang Xu ◽  
Song Wei

Adopting an accurate micro-tensile method based on dynamic mechanical analyzer (DMA) instrument, the tensile strength of three kinds of copper-wire/solder/copper-wire sandwich structured microscale lead-free solder joints that underwent current stressing with a direct current density of 1.0×104 A/cm2 and loading time of 48 hours were investigated, and compared with those solder joints isothermal aged at 100 0C for 48 hours and as-reflowed condition. These three kinds of microscale columnar solder joints have different volumes, i.e., a same diameter of 300 μm but different heights of 100 μm, 200 μm and 300 μm. Experimental results show that both current stressing and isothermal aging degrades the tensile strength of microscale solder joints, and the solder joint with smaller volume obtains higher tensile strength under same test condition. In addition, current stressing induces obvious electromigration (EM) issue under high current density of 1.0×104 A/cm2, resulting in the decreasing of tensile strength and different fracture position, mode and surface morphology of microscale solder joints. The degree of strength degradation increases with the increasing of joint height when keep joint diameter constant, this is mainly due to that electromigration leads to voids form and grow at the interface of cathode, and solder joints with larger volume may contains more soldering defects as well.


Sign in / Sign up

Export Citation Format

Share Document