Study on Intelligent Monitoring for Cooling System of Power Transformer

2013 ◽  
Vol 655-657 ◽  
pp. 1440-1444
Author(s):  
Guo Jin Chen ◽  
Ming Xu ◽  
Ting Ting Liu ◽  
Jing Ni ◽  
Dong Xie ◽  
...  

On the basis of studying the transformer condition assessment, the paper put forward the monitoring framework of the transformer cooler based on the intelligent electrical grid, and developed the intelligent monitoring system of the transformer cooler based on the DCS and dual PLC. The system used the DCS and dual PLC redundancy, the intelligent controller of the motor, the system’s platform for the centralized monitoring, the environmental control system and the other advanced technology, and implemented the monitoring, remote control and status monitoring of the transformer cooling system to improve the reliability and adaptability of the transformer cooler system. The system can be applied for the intelligent electrical grid. The above technologies are innovative in the high-performance distributed bus, the integrated design of three-phase solid state relay and magnetic latching relay and the cooling technology of the semiconductor in the PLC module, and lie in the leading domestic level.

2020 ◽  
Vol 67 (1) ◽  
pp. 42-47
Author(s):  
Anatoliy I. Sopov ◽  
Aleksandr V. Vinogradov

In power transformers, energy losses in the form of heat are about 2 percent of their rated power, and in transformers of large power centers reach hundreds of kilowatts. Heat is dissipated into the environment and heats the street air. Therefore, there is a need to consume this thermal energy as a source of heat supply to nearby facilities. (Research purpose) To develop methods and means of using excess heat of power transformers with improvement of their cooling system design. (Materials and methods) The authors applied following methods: analysis, synthesis, comparison, monographic, mathematical and others. They analyzed various methods for consuming excess heat from power transformers. They identified suitable heat supply sources among power transformers and potential heat consumers. The authors studied the reasons for the formation of excess heat in power transformers and found ways to conserve this heat to increase the efficiency of its selection. (Results and discussion) The authors developed an improved power transformer cooling system design to combine the functions of voltage transformation and electric heating. They conducted experiments to verify the effectiveness of decisions made. A feasibility study was carried out on the implementation of the developed system using the example of the TMG-1000/10/0.4 power transformer. (Conclusions) The authors got a new way to use the excess heat of power transformers to heat the AIC facilities. It was determined that the improved design of the power transformer and its cooling system using the developed solutions made it possible to maximize the amount of heat taken off without quality loss of voltage transformation.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3298
Author(s):  
Gianpiero Colangelo ◽  
Brenda Raho ◽  
Marco Milanese ◽  
Arturo de Risi

Nanofluids have great potential to improve the heat transfer properties of liquids, as demonstrated by recent studies. This paper presents a novel idea of utilizing nanofluid. It analyzes the performance of a HVAC (Heating Ventilation Air Conditioning) system using a high-performance heat transfer fluid (water-glycol nanofluid with nanoparticles of Al2O3), in the university campus of Lecce, Italy. The work describes the dynamic model of the building and its heating and cooling system, realized through the simulation software TRNSYS 17. The use of heat transfer fluid inseminated by nanoparticles in a real HVAC system is an innovative application that is difficult to find in the scientific literature so far. This work focuses on comparing the efficiency of the system working with a traditional water-glycol mixture with the same system that uses Al2O3-nanofluid. The results obtained by means of the dynamic simulations have confirmed what theoretically assumed, indicating the working conditions of the HVAC system that lead to lower operating costs and higher COP and EER, guaranteeing the optimal conditions of thermo-hygrometric comfort inside the building. Finally, the results showed that the use of a nanofluid based on water-glycol mixture and alumina increases the efficiency about 10% and at the same time reduces the electrical energy consumption of the HVAC system.


2021 ◽  
Vol 11 (6) ◽  
pp. 2608
Author(s):  
Chien-Hsun Liu ◽  
Willybrordus H. P. Muda ◽  
Cheng-Chien Kuo

A power transformer (PT) in power generation or transmission is critical to maintaining electrical continuity. Fault detection on a PT is needed, especially of incipient faults, which are often caused by a turn-to-turn fault (TTF) before it develops into a more severe fault. We use a hybrid algorithm between conventional and modern techniques to detect a developing fault in a PT. The current response signals from a negative sequence current directional algorithm, extended park vector algorithm (EPVA), differential negative sequence current, and EPVA-fuzzy system are combined to distinguish the possibility of a TTF. The subalgorithms are combined using a hybrid detection algorithm to distinguish the faults. The model is a 10 MVA, three-phase PT with Δ-Y configuration 150/300 kV, simulated using MATLAB Simulink software. The results show that by combining the subalgorithms, several limitations are distinguished within the TTF with a slight increase in accuracy.


Author(s):  
M. M. S. Khan ◽  
M. S. Arifin ◽  
M. H. Rahaman ◽  
I. K. Amin ◽  
M. R. T. Hossain ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document