Input switched high performance three phase Buck-Boost controlled rectifier

Author(s):  
M. M. S. Khan ◽  
M. S. Arifin ◽  
M. H. Rahaman ◽  
I. K. Amin ◽  
M. R. T. Hossain ◽  
...  
Keyword(s):  
Author(s):  
J. Lamterkati ◽  
L. Ouboubker ◽  
M. Khafallah ◽  
A. El afia

<p><span>The study made in this paper concerns the use of the voltage-oriented control (VOC) of three-phase pulse width modulation (PWM) rectifier with constant switching frequency. This control method, called voltage-oriented controlwith space vector modulation (VOC-SVM). The proposed control scheme has been founded on the transformation between stationary (α-β) and and synchronously rotating (d-q) coordinate system, it is based on two cascaded control loops so that a fast inner loop controls the grid current and an external loop DC-link voltage, while the DC-bus voltage is maintained at the desired level and ansured the unity power factor operation. So, the stable state performance and robustness against the load’s disturbance of PWM rectifiers are boths improved. The proposed scheme has been implemented and simulated in MATLAB/Simulink environment. The control system of the VOC-SVM strategy has been built based on dSPACE system with DS1104 controller board. The results obtained show the validity of the model and its control method. Compared with the conventional SPWM method, the VOC-SVM ensures high performance and fast transient response.</span></p>


Author(s):  
Mohammad Rustam M. L. ◽  
F. Danang Wijaya

Under various external conditions, grid connected PV system performance is strongly affected by the topology that is used to connect a PV system with grid. This research aims to design a multistring based converter topology for three-phase grid connected 200 kW PV system that has a high performance in various operating conditions. Research was done by a simulation method using Matlab-Simulink with performance being evaluated including the generated power, efficiency, power quality in accordance with grid requirements, as well as the power flow. In the simulation, multistring converter topology was designed using two dc-dc boost multistring converters connected in parallel to a centralized of three-phase three-level NPC inverter with the size of the string being shorter and more parallel strings as well as the maximum voltage of the PV array of 273.5 V close to dc voltage reference of 500 V. Each dc-dc boost multistring converter have individual MPPT controllers. The simulation results showed that this multistring converter topology had a high performance in various operating conditions. This due to more power generated by the NPC inverter (> 190 kW) at the time of high power generation on the STC conditions (1000 W/m2, 25 oC), the lowest efficiency of the total system is 95.08 % and the highest efficiency of the total system is 99.4 %, the quality of the power generated in accordance with the requirements of grid, as well as the inverter put more active power to the grid and less reactive power to the grid. The response of the inverter slightly worse for loads with greater reactive power and unbalanced.


Sign in / Sign up

Export Citation Format

Share Document