Study on Preparation and Characterization of Modified Montmorillonite with the Aromatic Isocyanate

2013 ◽  
Vol 662 ◽  
pp. 297-300
Author(s):  
Xiao Hua Gu ◽  
Xi Wei Zhang ◽  
Jia Liang Zhou ◽  
Bao Yun Xu

In this article, the methylene diphenyl isocyanate (MDI) containing two benzene rings was used to modify montmorillonite. The detection analysis of the original MMT and the samples after modification were investigated by infrared spectroscopy (FT-IR), x-ray diffraction (XRD) and thermo gravimetry (TG). Analysis of detection results shows that MDI and the surface of montmorillonite form chemical bonds and the spacing of montmorillonite layer increases from 1.24 nm to 1.86 nm. It provides highly active terminal isocyanate groups in situ polymerization for the montmorillonite and smart materials. It will improve the compatibility of the MMT and polymer, and allows the montmorillonite have always been able to maintain a good dispersion in polymer. Meanwhile the diphenyl isocyanate into ring can improve the heat stability of montmorillonite-modified polymer.

Author(s):  
Khalil Faghihi ◽  
Mostafa Ashouri ◽  
Akram Feyzi

<p>A series of nanocomposites consist of organic polyimide and organo-modified clay content varying from 0 to 5 wt%, were successfully prepared by in situ polymerization. Polyimide used as a matrix of nanocomposite was prepared through the reaction of 1,4-bis [4-aminophenoxy] butane (APB) and 3،3΄،4،4΄-benzophenone tetra carboxylic dianhydride (BTDA) in N,N-dimethylacetamide (DMAc). The resulting nanocomposite films were characterized by FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA).</p>


2010 ◽  
Vol 663-665 ◽  
pp. 542-545 ◽  
Author(s):  
Bing Jie Zhu ◽  
Xin Wei Wang ◽  
Mei Fang Zhu ◽  
Qing Hong Zhang ◽  
Yao Gang Li ◽  
...  

The PANI/ITO conducting nanocomposites have been synthesized by in-situ polymerization. The obtained nanocomposites were characterized by X-ray diffraction pattern, scanning electron microscopy and Fourier transform infrared. Electrical conductivity measurements on the samples pressed into pellets showed that the maximum conductivity attained 2.0 ± 0.05 S/cm for PANI/ITO nanocomposites, at ITO doping concentration of 10 wt%. The results of the present work may provide a simple, rapid and efficient approach for preparing PANI/ITO nanocomposites.


2007 ◽  
Vol 124-126 ◽  
pp. 287-290 ◽  
Author(s):  
Fei Liu ◽  
Yong Jun He ◽  
Jeung Soo Huh

The nano-CeO2 was synthesized by two-step solid-phase reaction. The image of TEM showed that nano-CeO2 with an average size of about 70 nm. The series of polyaniline/nano-CeO2 composites with different PANi: CeO2 ratios were prepared by in-situ polymerization in the presence of hydrochloric acid (HCl) as dopant by adding nano-CeO2 into the polymerization reaction mixture of aniline. The composites obtained were characterized by FT-IR and UV-vis spectroscopy analysis. The FT-IR spectra of nanocomposites indicate different blue-shifts, attributed to C–N stretching mode for benzenoid unit. The UV-vis spectra of nanocomposites display einstein-shifts compared with PANi at 620nm. The conductivity properties of the composites are also changed compare to the pure PANi. These results suggest that the interactions between the polymer matrix and nanoparticles take place in polyaniline/nano- CeO2 composites.


2012 ◽  
Vol 557-559 ◽  
pp. 371-374
Author(s):  
Lian Liu ◽  
Teng Yu ◽  
Pei Wang ◽  
Guang Shuo Wang

Nanocomposites of poly(ε-caprolactone) (PCL) and layered double hydroxide (LDH) were prepared by in situ polymerization at low LDHs loadings in this work. The resultants were characterized by FTIR spectroscopy, X-ray diffraction (XRD), differential scanning calorimeter (DSC) and UV-visible spectroscopy (UV-vis). FTIR showed that the PCL/LDHs nanocomposites were prepared successfully by in situ polymerization and XRD spectra showed that the crystal structure did not change greatly in the presence of LDHS. DSC results confirmed that LDHs could act as nucleating agents. UV-vis spectra showed that LDHs had stronger absorbance peak than LDH. Moreover, the PCL/LDHs nanocomposites had strong anti-ultraviolet effect by introduction of LDHs into polymer matrix.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Dandan Sun ◽  
Jiang Li ◽  
Qinghua Pan ◽  
Chaowei Hao ◽  
Guoqiao Lai

PA6/LiCl composites were synthesized by in situ anionic polymerization based on the interaction between the inorganic salts and PA6. Sodium hydroxide as initiator and N-acetylcaprolactam as activator were used in the preparation of PA6/LiCl composites with variety of LiCl content. X-ray diffraction (XRD) and differential scanning calorimeter (DSC) testing results showed that both of degree of crystallinity and melting temperature of the composites were decreased under the influence of LiCl. And theγcrystal phase proportion increased with increasing the LiCl content to appropriate amount.


2011 ◽  
Vol 399-401 ◽  
pp. 359-362 ◽  
Author(s):  
Yi Chun Wang ◽  
Zheng Wei Dai ◽  
Yuan Xue

Thermo-sensitive polyurethane (TSPU) was synthesized from poly(ε-caprolactone) and 4,4’-methylenebis (phenyl isocyanate) by a two-step process with 1,4-butanediol as the chain extender. Following that, a novel temperature-sensitive material was created by the strategy of IPN from TSPU and PNIPAAm in the method of in situ polymerization. The chemical structure and thermo properties of the semi-IPN were characterized with FT-IR and DSC. The results prove that intensive inter-molecular interactions exist between TSPU and PNIPAAm chains, which have significant influence on the phase transition behaviors of the material. According to these results, the transition temperature of the semi-IPN can be adjusted in the range of 30~40 °C by controlling the composition of TSPU and the semi-IPNs.


2018 ◽  
Vol 36 (2) ◽  
pp. 283-287
Author(s):  
Aseel A. Kareem

Abstract Polyimide/polyaniline nanofiber composites were prepared by in situ polymerization with various weight percentages of polyaniline (PANI) nanofibers. X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), proved the successful preparation of PANI nanofiber composite films. In addition, thermal stability of PI/PANI nanofiber composites was superior relative to PI, having 10 % gravimetric loss in the range of 623 °C to 671 °C and glass transition temperature of 289 °C to 297 °C. Furthermore, the values of the loss tangent tanδ and AC conductivity σAC of the nanocomposite films were notably higher than those of pure polyimide. The addition of 5 wt.% to 15 wt.% PANI nanofiber filler enhanced the activation energy of PI composites from 0.37 eV to 0.34 eV.


2014 ◽  
Vol 904 ◽  
pp. 7-9
Author(s):  
Xiao Hua Gu ◽  
Xi Wei Zhang ◽  
Bao Yun Xu ◽  
Peng Zeng

In this paper, the diphenyl methane diisocyanate (MDI) was used to modify montmorillonoid (MMT) and got the organic montmorillonite (OMMT), which was used with the monomers of PET by in situ polymerization method to prepare PET/MMT nanocomposition. The OMMT was analyzed by the X ray diffraction (XRD) to test the change of the spacing layer. Dispersion of MMT in the PET/MMT nanocomposites were studied with XRD and SEM and by means of thermogravimetric analyzer (TGA) on the thermal stability of PET/MMT nanocomposites. The results showed that, MDI modified MMT successfully, and the compatibility of MMT and PET was increased .


2019 ◽  
Vol 73 (9) ◽  
pp. 1074-1086
Author(s):  
Valentina Aguilar-Melo ◽  
Alejandro Mitrani ◽  
Edgar Casanova-Gonzalez ◽  
Mayra D. Manrique-Ortega ◽  
Griselda Pérez-Ireta ◽  
...  

A burial and a rich offering were found under Room 2 in the Murals Building, Bonampak, a Mayan archaeological site situated in Chiapas, Mexico. This burial may be related with the creation of the famous mural paintings. A rich set of jewelry made of green stones was among the different objects found. Green stones have great importance in Mesoamerican cultures, those composed of jadeite being the most appreciated. To characterize the green stones, different spectroscopic techniques were used in a complementary way: Raman and infrared spectroscopies (FT-IR) were used for global mineralogical analysis, while X-ray diffraction (XRD) and X-ray fluorescence (XRF) were applied simultaneously in situ on the artifacts that were not successfully identified by these molecular techniques. In addition, XRF was used to contrasts the elemental information from pieces composed of pyroxenes that may be related to the raw sources of jade in Guatemala. The main minerals identified within the beads and earrings were jadeite with omphacite and jadeite with albite; to a minor extent, quartz, and serpentine. In this paper, the main features of the molecular and X-ray techniques are compared in order to determine the advantages and limitations of these spectroscopies for mineral identification. With this combination of techniques, it was possible to undertake a suitable characterization of the analyzed objects. This paper focuses on the XRD–XRF combined analysis for in situ noninvasive characterization.


2011 ◽  
Vol 399-401 ◽  
pp. 444-448 ◽  
Author(s):  
Jun Qian Mu ◽  
Yi Yang ◽  
Zhi Han Peng

In this paper, a novel flame retarded MCA-PA6 (PA6 incorporated with melamine cyanurate) resin was synthesized by in-situ polymerization. The synthetic product was characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM), Fourier transform infrared spectroscope (FTIR), thermogravimetry analysis (TG), differential scanning calorimetry (DSC) and elemental analysis. The result showed that good dispersability were obtained in MCA-based PA6 prepared successfully. Meanwhile, the maximum mass loss rate appeared at about 450 °C and the residual char increased from 1.2 wt% to 3.2 wt% at 500 °C due to the existence of MCA.This research revealed MCA-PA6 owned a good thermal stability, hence there was potential flame retardance.


Sign in / Sign up

Export Citation Format

Share Document