Optical Properties and Morphology of Al Doped Zinc Oxide Thin Film Exposed on Wet and Dry Conditions

2013 ◽  
Vol 667 ◽  
pp. 272-276
Author(s):  
S.A. Razali ◽  
Mohamad Hafiz Mamat ◽  
M.N. Berhan ◽  
Mohamad Rusop Mahmood

The optical properties and morphology of Aluminum (Al) doped Zinc Oxide (ZnO) thin films prepared by sol-gel method have been investigated. The thin films were prepared at annealing temperature of 550 OC and have been exposed under wet and dry conditions. UV-Vissmeasurements have been carried out to investigate the optical properties while Scanning Electron Microscope (SEM) to investigate morphology. The grain size of films was increased with increased annealing temperature. The average optical transmittance became about 80% in the visible and had sharp ultraviolet absorption edges at 380 nm. The absorption edge analysis revealed that the optical band gap energy for the films was ~ 3.26 eV. The surface morphology in increasing annealing temperature has a big size and less porosity between particles.

2015 ◽  
Vol 1109 ◽  
pp. 598-602 ◽  
Author(s):  
Mohd Nizar Zainol ◽  
Shafinaz Sobihana Shariffudin ◽  
Mohamad Hafiz Mamat ◽  
Mohamad Rusop

This paper presents on the effect of oxygen annealing on the electrical properties and optical properties. Sol gel spin coating is used to deposit zinc oxide thin films on glass substrates to obtain the uniform thin films. Here, the ZnO thin films were annealed in oxygen environment with various oxygen concentration of 20 to 40 sccm. This metal oxide has shown its ability as a very high optical transmittance which at 20 sccm thin films give the highest transmittance that is 97.44% and at 40 sccm thin films give the lowest transmittance that is 87.61%. Next, this metal oxide also has shown its ability in fairly good electrical properties which the lowest resistivity at 40 sccm thin films is 1.61× 104 Ωcm-1.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1744 ◽  
Author(s):  
Mohammad Hossein Nateq ◽  
Riccardo Ceccato

The electrical and optical properties of sol–gel derived aluminum-doped zinc oxide thin films containing 2 at.% Al were investigated considering the modifying effects of (1) increasing the sol H2O content and (2) a thermal treatment procedure with a high-temperature approach followed by an additional heat-treatment step under a reducing atmosphere. According to the results obtained via the TG-DTA analysis, FT-IR spectroscopy, X-ray diffraction technique, and four-point probe resistivity measurements, it is argued that in the modified sample, the sol hydrolysis, decomposition of the deposited gel, and crystallization of grains result in grains of larger crystallite size in the range of 20 to 30 nm and a stronger c-axis preferred orientation with slightly less microstrain. The obtained morphology and grain-boundary characteristics result in improved conductivity considering the resistivity value below 6 mΩ·cm. A detailed investigation of the samples’ optical properties, in terms of analyzing their absorption and dispersion behaviors through UV-Vis-NIR spectroscopy, support our reasoning for the increase of the mobility, and to a lesser extent the concentration of charge carriers, while causing only a slight degradation of optical transmittance down to nearly 80%. Hence, an enhanced performance as a transparent conducting film is claimed for the modified sample by comparing the figure-of-merit values.


2011 ◽  
Vol 410 ◽  
pp. 142-147 ◽  
Author(s):  
Soram Bobby Singh ◽  
Ng Boinis Singh ◽  
H. Basantakumar Sharma

Nanocrystalline Bismuth ferrite (BiFeO3) thin films of different thickness were deposited on glass substrates using sol-gel processing technique. The effect of thickness on structural and optical properties of BiFeO3thin films has been studied. The as-fired films were found to be amorphous that crystallized to hexagonal structure after annealing at 500°C for 2hr in air. The XRD pattern shows that the samples are polycrystalline in structure. At low annealing temperature (400°C), the thick film samples show amorphous in nature while thinner film shows some crystallinity with the presences of impurity phases. At high annealing temperature, all the samples show single phase distorted perovskite BiFeO3structure. The AFM photograph reveals that there is an increase in the grain size with the increase in film thickness. Optical transmittance spectra shows that, with the increase in film thickness, there is a decrease in transmittance (T%). Further, it is observed that increase in film thickness would lead to the decrease in optical energy band gap of the samples. The effect of thickness on the photoluminescent properties of BiFeO3films have also been studied for their possible application in nanoscale optoelectronic devices.


2015 ◽  
Vol 1109 ◽  
pp. 572-576
Author(s):  
M.F. Nasir ◽  
Mohd Hannas ◽  
Mohamad Hafiz Mamat ◽  
Mohamad Rusop

This project has been focused on the electrical and optical properties respectively on the effect of Undoped zinc oxide (ZnO) thin films at different annealing temperature which is varied 400 oC, 450 oC, 500 oC, and 550 oC.Undoped ZnO solutions were deposited onto the glass substrates using sol-gel spin coating method. This project was involved with three phases, which are thin films preparation, deposition and characterization. The thin films were characterized using Current Voltage (I-V) measurement and UV-vis-NIR spectrophotometer for electrical properties and optical properties. The electrical properties show that the resistivity is the lowest at 500 oC which its resistivity is 5.36 × 104Ωcm-1. The absorption coefficient spectrum obtained from UV-Vis-NIR spectrophotometer measurement shows all films exhibit very low absorption in the visible (400-800nm) and near infrared (NIR) (>800nm) range but exhibit high absorption in the UV range.


Author(s):  
Atefeh Nazari Setayesh ◽  
Hassan Sedghi

Background: In this work, CdS thin films were synthesized by sol-gel method (spin coating technique) on glass substrates to investigate the optical behavior of the film. Methods: Different substrate spin coating speeds of 2400, 3000, 3600 rpm and different Ni dopant concentrations of 0 wt.%, 2.5 wt.%, 5 wt.%) were investigated. The optical properties of thin films such as refraction index, extinction coefficient, dielectric constant and optical band gap energy of the layers were discussed using spectroscopic ellipsometry method in the wavelength range of 300 to 900 nm. Results: It can be deduced that substrate rotation speed and dopant concentration has influenced the optical properties of thin films. By decreasing rotation speed of the substrate which results in films with more thicknesses, more optical interferences were appeared in the results. Conclusion: The samples doped with Ni comparing to pure ones have had more optical band gap energy.


Ionics ◽  
2010 ◽  
Vol 16 (9) ◽  
pp. 815-820 ◽  
Author(s):  
Yidong Zhang ◽  
Wenjun Fa ◽  
Fengling Yang ◽  
Zhi Zheng ◽  
Pingyu Zhang

2021 ◽  
Vol 24 (3) ◽  
pp. 38-42
Author(s):  
Marwa Mudfer Alqaisi ◽  
◽  
Alla J. Ghazai ◽  

In this work, pure Zinc oxide and tin doped Zinc oxide thin films nanoparticles with various volume concentrations of 2, 4, 6, and 8V/V% were prepared by using the sol-gel method. The optical properties were investigated by using UV-Visible spectroscope, and the value exhibits the direct allowed transition. The average of transmittance was around ~(17-23) %in visible region. The optical energy band gap was calculated with wavelength (300-900) nm for pure ZnO and Sn doped ZnO thin films which decreases with increasing concentration from 3.4 eV to 3.1 eV respectively and red shift. The real dielectric(εr) and the imaginary dielectric εiare the same behavior of the refractive index(n) the extinction coefficient (k) respectively. The optical limiting properties were studied by using an SDL laser with a wavelength of 235 nm. ZnO and doping thin films an found efficient as optic limiting and depend on the concentration of the all samples.


Sign in / Sign up

Export Citation Format

Share Document