Experimental Study on Cement Mortar with Bentonite

2013 ◽  
Vol 671-674 ◽  
pp. 1741-1744 ◽  
Author(s):  
Hsien Hua Lee ◽  
C. W. Wang

For an infrastructure construction located in marine environments, maintaining good durability for the structures always imposes serious challenges, especially for the structure made of reinforced concrete. Concrete exposed to marine environment may deteriorate as a result of combined effects of both physical and chemical actions from marine environment. Corrosion of the reinforced steel bars that are embedded in the concrete is the most serious problem. Therefore, a method to protect the reinforced concrete in the marine environment from damages due to material deterioration and corrosion is proposed in this study. The method is through the application of bentonite material by utilizing its very finely divided form so that the larger capillary pores in concrete can be filled up. In this way, the impermeability of concrete material can be enhanced and then improve the corrosion resistant ability of the material.

2021 ◽  
Vol 275 ◽  
pp. 122176
Author(s):  
Fernanda Martins Cavalcante de Melo ◽  
Anna Cristina Araújo de Jesus Cruz ◽  
Leonardo Dantas de Souza Netto ◽  
Marcos Antônio de Souza Simplício

2019 ◽  
Vol 13 (03n04) ◽  
pp. 1940002 ◽  
Author(s):  
Yao Chen ◽  
Qian Zhang ◽  
Jian Feng ◽  
Zhe Zhang

This study presents shear resistance of precast reinforced concrete (RC) shear walls. A novel assembling method for upper and lower wall panels is proposed, whereas vertical steel bars are grouped into bundles and effectively connected in preformed holes. To evaluate the feasibility and shear resistance of such a connection method, three specimens of precast shear walls with different horizontal steel bars have been constructed and tested under monotonic loading while subjected to a constant vertical compression. The results show that cracks mainly appear under the line that connects the midpoint of tension side and the corner of the compression side. The weak section of these shear walls is at the top of the preformed holes, and through cracks do not appear at the bottom of walls. These innovative precast shear walls are reliable, and no rebar is pulled out or seriously slipped. The yield load of the shear wall is great, and the stage between yield and failure is satisfactory. The bearing capacity declines slowly after the peak value.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Chengzhi Wang ◽  
Xin Liu ◽  
Pengfei Li

The findings of an experimental study that was undertaken to investigate the performance of concrete-filled steel tubular members subjected to lateral loads are reported in this study. Columns of pure concrete, concrete with reinforcing bars, and two steel tube thicknesses were considered. Two different tests were conducted in this study. One test is used to research the performance of steel tube-reinforced concrete model piles under a lateral loading. The other test is used to research the effect of the depth of rock embedment for piles embedded in a foundation to simulate actual engineering applications in an experimental study. According to these test results, a detailed analysis was carried out on the relationships, such as the stress-strain and load-displacement relationships for the specimen. These tests show that the steel tube thickness and steel bars will significantly enhance the lateral bearing capacity and rigidity of the composite components. Additionally, the ultimate bending moment formula of a steel tube-reinforced concrete pile is deduced. The comparison of the calculated results with the experimental results shows that this formula is applicable for this type of pile foundation.


2016 ◽  
Vol 845 ◽  
pp. 132-139
Author(s):  
Mochamad Teguh ◽  
Novia Mahlisani

The limited lengths of reinforcing bars have been commonly found in the practical construction of most reinforced concrete structures. The required length of a bar may be longer than the available stock of steel length. For maintaining desired continuity of the reinforcement in almost all reinforced concrete structures, some reinforcing bars should be carefully spliced. In the case of long flexural beam, bar installers end up with two or even more pieces of steel that must be spliced together to accomplish the desired steel length. An experimental study was conducted to investigate flexural behavior of reinforced concrete beams utilizing a variety lap splices of reinforcing steel bars under two-point loading. Five variations of lap splices of reinforcing steel bars positioned at midspan of tensile reinforcement of the beam were investigated. Welded joints and overlapped splices were used to construct the variation of lap splices of reinforcing steel bars. The general trend in crack pattern, the load deflection characteristics and the mode of failure of flexural beams under two-point loading were also observed. The flexural strength comprising load-displacement response, flexural crack propagation, displacement ductility is briefly discussed in this paper.


2017 ◽  
Vol 7 (2) ◽  
pp. 9-17 ◽  
Author(s):  
Jason Maximino Co Ongpeng

Non-destructive test has been applied to measure damage in structures. Common structures are assessed with the use of practical and easy application of ultrasonic pulse velocity (UPV). In this paper, the damage brought by corrosion was investigated using Proceq Punditlab having 54 kHz transducers oriented in direct transmission under the UPV. Fifty-four reinforced concrete of size 150 mm x 250 mm x 300 mm with two 10mm diameter reinforcing bars (Grade 40) and one 6mm diameter stainless steel bar (Type 304) was cast and tested. It had varying water cement ratio of 45%, 50%, and 55%with two conditions at day 0 (after curing), day 14, and day 28: non-accelerated condition under air-drying and accelerated condition using impressed current technique (ICT). The UPV test was conducted in each layer where reinforced steel bars were present and absent. It was found out that UPV test results was insignificant to all non-accelerated concrete, while it indicated significant damage for accelerated corrosion rate of more than 8 mm per year. In accelerated condition, the decrease in strength under UPV test was more than 20% for all specimens along the reinforced bars, and less than 15% for all specimens along the layer with no steel bars. This showed that the effect of corrosion greatly affects the entirety of structures near and far from the placement of reinforcing steel bars.


Sign in / Sign up

Export Citation Format

Share Document