Measurement and Questionnaire Survey on Indoor Thermal Environment of a Library in the Hot-Summer and Warm-Winter Region of China

2013 ◽  
Vol 671-674 ◽  
pp. 2664-2669
Author(s):  
Hong Juan Liu ◽  
Jiang He ◽  
Kai Qiong Liu

This study dealt with the indoor thermal environment of an university library in Nanning where is hot in summer and warm in winter. Measurements of air temperatures, relative humidity and air velocity etc. at selected points inside the library were conducted during a summer period. Analysis results of measurement data was described in the paper. Thermal comfort was analyzed based on questionnaire survery. This paper also provides suggestions for improving the indoor thermal environment and comfort as well as energy performance in library-like buildings in the hot-summer and warm-winter region.

2013 ◽  
Vol 671-674 ◽  
pp. 2659-2663
Author(s):  
Kai Qiong Liu ◽  
Hong Juan Liu ◽  
Jiang He

This paper presents a study on the indoor thermal environment of a library in the hot-summer and warm-winter region using field measurements. 15 measurement points were selected to measure the following thermal parameters: air temperature, globe temperature, surface temperature, relative humidity and air velocity. Analysis of measurement data are described, and effective strategies were proposed from the analysis results for improving the thermal environment of library buildings in the hot-summer and warm-winter region.


2011 ◽  
Vol 393-395 ◽  
pp. 1106-1109
Author(s):  
Huang Xiang ◽  
Wei Wang ◽  
Sheng Wu

The factors affecting indoor thermal environment are briefly introduced in this article, and one Internet bar was tested and analyzed that used evaporative air-conditioning in lanzhou, gansu. Meanwhile, through the air temperature, the relative humidity and air velocity of sensitivity factors were analyzed that heat sensation to human body, changed the heat sensation for people's from qualitative to the quantitative. As one way and the basis has provided for the improvement room internal heat environment quality.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Jianglong Zhen ◽  
Jun Lu ◽  
Guangqin Huang ◽  
Liyue Zeng ◽  
Jianping Lin ◽  
...  

In order to study the characteristics of indoor thermal environment in the airport terminal in Tibet Plateau with radiant floor heating in winter, a field measurement of the indoor thermal environment was conducted in Lhasa Gonggar Airport terminal 2. First, the unique climate characteristics in Tibet Plateau were analyzed through comparison of meteorological parameters in Beijing and Lahsa. The thermal environment in the terminal was divided into outer zone and inner zone as well as south zone and north zone. Thermal environment parameters including air temperature, black globe temperature, relative humidity in each zone, and inner surface temperature of envelope were measured and analyzed. Meanwhile, temperature and relative humidity in the vertical direction were measured. In addition, PMV and PPD were calculated for evaluating the thermal environment in the terminal. The findings can provide guidance for the design and regulation of thermal environment in terminals in Tibet Plateau in China.


2020 ◽  
Vol 10 (5) ◽  
pp. 1801 ◽  
Author(s):  
Radostina A. Angelova ◽  
Rositsa Velichkova

There are different actors in an operating room (OR), who have controversial requirements for the indoor thermal environment. While the patient is at risk of perioperative hypothermia, the surgeons are in a state of thermophysiological discomfort. The study presents an analysis of the thermophysiological comfort of both patient and surgeons in an OR. Surgical clothing ensembles with three values of clothing insulation are simulated. Different indoor environment conditions (air temperature and relative humidity) are tested. The analysis is based on the calculation of predicted mean vote and predicted percentage of dissatisfied (PMV-PPD) indexes and assessment of the climatic conditions categories. Discussion of the predicted heat strain is also presented. The simulated results and their analysis show considerable discrepancies between the thermophysiological comfort of the patient and the surgeons, even when dressed in a light protective ensemble, in the same indoor environment.


2020 ◽  
Vol 41 (3) ◽  
pp. 247-260
Author(s):  
Roy Candra Sigalingging ◽  
David Chow ◽  
Steve Sharples

In a hot and humid tropical climate, natural ventilation brings high levels of moisture into dwellings that, together with occupant activity, can result in very elevated internal relative humidity levels. Coupling these high relative humidities with high internal air temperatures creates occupant thermal discomfort, which is typically ameliorated in the tropics using energy-intensive air conditioning systems. This paper has investigated the potential benefits for thermal comfort and energy usage of applying the German Passivhaus standard to tropical dwellings. By creating a super insulated and air-tight envelope, the Passivhaus standard reduces fabric heat transfer, controls air infiltration and provides low-energy comfort. Applying this approach to a tropical terraced house might be effective but could, potentially, have an adverse impact on mechanical cooling demand. This study took an actual terraced property in Jakarta, Indonesia and thermally modelled its performance as insulation and airtightness levels were incrementally improved up to the Passivhaus standard. Field measurements in the dwelling of air temperature and relative humidity were used to validate the thermal model of the existing house. The validated model then tested the feasibility of meeting the Passivhaus energy standard for cooling in the modified tropical house. Simulation allowed the effects of air conditioning (AC) and dehumidifiers on thermal comfort and cooling loads to be investigated. The research develop the Passivhaus building model that had the floor insulation removed to let the ground floor act as a thermal sink and potentially provide radiant cooling. Analysis revealed that the building’s predicted air temperatures were affected in a beneficial way by having the Passivhaus without floor insulation. Practical application: Cooling in hot and humid tropical region is an energy-intensive approach. Design approaches that can bring comfort and save energy for the occupant are essential. The success of Passivhaus standard in mild climate might be transferable to bring comfort in tropical housing. Best practice can be developed by analysing the Passivhaus building performance in hot and humid tropical region.


Buildings ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 22 ◽  
Author(s):  
Ayaz Hosham ◽  
Tetsu Kubota

The purpose of this study was to investigate the effects of building microclimate on the indoor thermal environment of traditional Japanese houses, focusing especially on the shading effect of trees as well as the cooling effect of spraying water. Basically, the indoor thermal environment was found to follow the outdoor conditions due to the open-plan and lightweight wooden structure. Nevertheless, air temperatures of the living rooms in the two case study houses were lower than the corresponding outdoors by approximately 0.5 °C and 2 °C, respectively. It was found that the semi-outdoor spaces acted as thermal buffers for promoting cross-ventilation as well as pre-cooling to provide “warm but breezy” conditions to the surrounding indoor spaces. The results showed that the surface temperature of semi-outdoor spaces can be reduced by shading and water spraying, among which shading has prolonged effects and water spraying can reduce the surface temperature during peak hours and the following night.


2019 ◽  
Vol 111 ◽  
pp. 01042
Author(s):  
Matteo Bilardo ◽  
Lorenzo Comba ◽  
Paolo Cornale ◽  
Andrea Costantino ◽  
Enrico Fabrizio

Climate control is of the foremost importance in structures for intensive animal rearing because many animals (e.g. pigs and broilers) tolerate a small range of climate conditions (mainly air temperature and relative humidity) that may differ considerably from the outdoor environment. For this reason, the indoor climate in the majority of structures for animal husbandry is guaranteed by HVAC systems. On the one hand, the use of mechanical systems makes it possible to avoid production risks due to the unpredictability of the outdoor weather conditions and to maximize the feed efficiency, with positive effects on both the animal welfare and farm profit. On the other hand, the use of HVAC entails not negligible thermal and electrical energy consumptions. In literature, few data about the real thermo-hygrometric conditions and energy consumption of animal houses are present. In this work (in the framework of the EPAnHaus – Energy Performance certification of Animal Houses –project), the results obtained from a long-term monitoring campaign in two growing-finishing pig houses are presented. The performed measurements concerned environmental parameters and electrical power that were acquired during two production cycles (warm and cool seasons). For the environmental monitoring, both the buildings were equipped with temperature and relative humidity sensors embedded in portable data loggers (10 minutes logging time) that were placed in various spots inside the houses. Outdoor data were obtained through a weather station located near the test site. Concerning the energy monitoring, power transducers connected to portable data loggers (10 seconds logging time) were placed in the electric panel of each house to log the electrical energy consumptions due to ventilation, lighting and automatic feeding. The acquired data were used for carrying out analysis concerning the indoor thermal environment, its characterization in relation with the animal welfare, the electrical energy uses and the existing relations between all these aspects. The obtained data were used to evaluate the effectiveness of the HVAC system in guaranteeing the adequate indoor climate conditions (avoiding heat/cold stress conditions) and to identify electrical energy uses.


2012 ◽  
Vol 610-613 ◽  
pp. 2849-2853
Author(s):  
Hong Yin Ou ◽  
Fang Liu ◽  
Qing Long Song ◽  
Long Xing Yu

To improve the low air velocity above the bed areas during the night in hot summer, the reformed plan for the college dormitory fan was presented.The indoor environment was simulated by the software Airpak3.0 to compaire the fan with both no diversion deflector and diversion deflector (the deflector angles are 60°, 120° and 160°) respectively. And a field test was conducted to confirm the simulation results. The results show that the indoor thermal environment above the bed areas has been improved inordinately if adding a deflector with different angles. The air velocity can be increased by 0.15m/s at most when the deflector angle is 160°, yet the airflow displays most evenly with the 120° deflector angle. Meanwhile, the temperature and thermal discomfort have been decreased. The variation of the simulation and measurement values tends to be consistent, so it suggests the fan installing the diversion deflector may improve the thermal environment of college dormitory.


2021 ◽  
Vol 246 ◽  
pp. 15004
Author(s):  
Luiza Dębska ◽  
Justyna Krakowiak

The paper presents experimental results of a study on indoor thermal environment in selected educational buildings located in the city of Kielce (Poland). The volunteers in the investigated rooms were asked to fill in the anonymous questionnaires containing questions on their thermal sensation, thermal preference and thermal acceptability votes as well as humidity assessment and humidity preference votes. In total, 83 people completed the questionnaires. Simultaneously, the indoor air parameters were measured with a microlimate meter equipped with precision sensors to measure air and globe temperatures, air velocity and relative humidity. The analysis of the obtained results provides information on the subjective assessment of the thermal environment in the considered rooms. It allowed to assess whether the guidelines given in the standard are consistent with the real feeling of comfort of the respondents. Research in the performed scope has shown that the feelings of the respondents and the standard guidelines diverge. It was noticed that that the subjects definitely felt better in the rooms where the temperature was around 22.5°C. The subjects felt worse at the temperature of 25.3°C and the worst of 27.6°C.


2013 ◽  
Vol 9 (4) ◽  
pp. 393-401 ◽  
Author(s):  
Amin Taheri-Garavand ◽  
Shahin Rafiee ◽  
Alireza Keyhani ◽  
Payam Javadikia

AbstractIn this research, the experiment is done by a dryer. It could provide any desired drying air temperature between 20 and 120°C and air relative humidity between 5 and 95% and air velocity between 0.1 and 5.0 m/s with high accuracy, and the drying experiment was conducted at five air temperatures of 40, 50, 60, 70 and 80°C and at three relative humidity 20, 40 and 60% and air velocity of 1.5, 2 and 2.5 m/s to dry Basil leaves. Then with developed Program in MATLAB software and by Genetic Algorithm could find the best Feed-Forward Neural Network (FFNN) structure to model the moisture content of dried Basil in each condition; anyway the result of best network by GA had only one hidden layer with 11 neurons. This network could predict moisture content of dried basil leaves with correlation coefficient of 0.99.


Sign in / Sign up

Export Citation Format

Share Document