Atomic Simulation of Size Effect and Surface Properties of Aluminum Nanoparticles

2013 ◽  
Vol 680 ◽  
pp. 8-14 ◽  
Author(s):  
Wei Zhu ◽  
Wu Lin Song ◽  
Jian Jun Wang

Here, modified analytic embedded atom method (MAEAM) has been utilized to simulate size effect and surface properties of aluminum (Al) nanoparticles. According to the simulation results, we can find that lattice parameter and excess stored energy are size dependent. The simulated excess stored energy ranges from 2.12 to 57.61 kJ/mol, which is in the same order of magnitude with experiment results; surface energy of Al nanoparticles ranges from 0.78 to 1.10 J/m2, which is not invariant but size related. Furthermore, non-uniform lattice distortion has been observed in Al nanoparticles, and mainly concentrates in the first and second shell of surface layers. Theoretical research based on our simulation results provides a novel method to predict excess stored energy of metallic nanoparticles.

Nanoscale ◽  
2020 ◽  
Author(s):  
Feifei ZHANG ◽  
Jérôme Plain ◽  
Davy Gerard ◽  
Jérôme Martin

The surface topography is known to play an important role on the near- and far- field optical properties of metallic nanoparticles. In particular, aluminum (Al) nanoparticles are commonly fabricated through...


2021 ◽  
pp. 1-21
Author(s):  
Paweł Oleksy ◽  
Marcin Czupryna ◽  
Michał Jakubczyk

Abstract This article examines how selected attributes of Bordeaux fine wines (producer, vintage, quality, bottle size, case, flaws, and transaction volume) affect prices in three types of trading venues: auctions, electronic exchange, and the over-the-counter (OTC) market. The findings indicate a price differentiation across the venues. Wine aging leads to relatively higher prices at auctions than on the electronic exchange or the OTC. There is a nearly linear relationship between prices and wine ratings, the strongest of which is found in the case of auctions. The bottle size effect is mostly positive for supersized formats and is the strongest on an electronic exchange and the weakest at auctions. The transaction volume negatively affects wine prices in all the trading venues. The simulation results facilitate the construction of more realistic trading models and may help traders make more informed decisions on the choice of a trading venue, depending on the wine characteristics. (JEL Classifications: D40, G12, Q14, L66)


2016 ◽  
Vol 30 (02) ◽  
pp. 1550268 ◽  
Author(s):  
Jinwei Shi ◽  
Xingbai Luo ◽  
Jinming Li ◽  
Jianwei Jiang

To analyze the process of jet penetration in water medium quantitatively, the properties of jet penetration spaced target with water interlayer were studied through test and numerical simulation. Two theoretical models of jet penetration in water were proposed. The theoretical model 1 was established considering the impact of the shock wave, combined with the shock equation Rankine–Hugoniot and the virtual origin calculation method. The theoretical model 2 was obtained by fitting theoretical analysis and numerical simulation results. The effectiveness and universality of the two theoretical models were compared through the numerical simulation results. Both the models can reflect the relationship between the penetration velocity and the penetration distance in water well, and both the deviation and stability of theoretical model 1 are better than 2, the lower penetration velocity, and the larger deviation of the theoretical model 2. Therefore, the theoretical model 1 can reflect the properties of jet penetration in water effectively, and provide the reference of model simulation and theoretical research.


2015 ◽  
Vol 1087 ◽  
pp. 50-54 ◽  
Author(s):  
Mohamad Johari Abu ◽  
Julie Juliewatty Mohamed ◽  
Mohd Fadzil Ain ◽  
Zainal Arifin Ahmad

CaCu(3+x)Ti4O12 (CCTO) ceramics with different Cu-excess (x = 0 – 0.6) were prepared by conventional solid-state reaction method. Characterization of the prepared ceramics with XRD and FESEM showed that lattice parameter and grain size are slightly increased, indicating Cu-excess to have the big impact on the both phase structure and microstructure. The XRD profiles indicated that the secondary phase (CuO or Cu2O) existed at edge/corner of CCTO grain, which promoted inhibited grain growth behavior. The CCTO ceramics exhibited two trends of dielectric constant related to frequency, which showed a flatter curve about ~50 in 1 – 25 GHz regions, and it’s dropped rapidly to ~35 in 25 – 50 GHz region. With Cu-excess, the dielectric constant of the ceramics was increased for an average of a quarter-order of magnitude, while the tangent loss also increased up to triple times than x = 0, for the same frequency range. Despite enormous increase of dielectric constant related to varying Cu-excess, the tangent loss also increased.


2008 ◽  
Vol 2008 ◽  
pp. 1-4 ◽  
Author(s):  
Kalyana C. Pingali ◽  
Shuguang Deng ◽  
David A. Rockstraw

Ammonium nitrate was added to the spraying solution as a foaming agent to reduce the particle size of nanoparticles synthesized in the spray-pyrolysis process. Ammonium nitrate was effective in breaking the aerosol droplet size and generating nanoparticles that were of approximately one order-of-magnitude (from 200 to 20 nm) smaller diameter than those created in the absence of ammonium nitrate in the feed solution. This technique makes it possible to control the particle diameter of metallic nanoparticles below 20 nm.


2014 ◽  
Vol 15 (4) ◽  
pp. 327-333 ◽  
Author(s):  
Mohamad R. Banaei ◽  
M. R. Jannati Oskuee ◽  
F. Mohajel Kazemi

Abstract In this paper, a new advanced topology of stacked multicell inverter is proposed which is generally suitable for high number of steps associated with a low number of switches. Compared with traditional flying capacitor multicell and stacked multicell (SM) inverters, doubling the number of output voltage levels and the RMS value, ameliorating the output voltage frequency spectrum, decreasing the number and rating of components, stored energy and rating of flying capacitors are available with the proposed inverter. These improvements are achieved by adding only four low-frequency switches to the traditional SM inverter’s structure. The suggested topology is simulated using MATLAB/SIMULINK software, and simulation results are presented to indicate well-performance of the novel converter. In addition, the experimental results of proposed topology prototype have been presented to validate its practicability.


2020 ◽  
Vol 194 ◽  
pp. 01011
Author(s):  
Chao Zheng ◽  
Lan Yu ◽  
Ning Sun ◽  
Hualong Zhou ◽  
Jiangyi He

The loss of water resources caused by mining fissures is a key factor restricting the green development of coal resources in western mining areas. in order to analyze the influence of mining thickness and face width on the development height of water diversion fracture zone, based on the characteristics of overburden in Xinzhuang Coal Mine, the finite difference software FLAC3D is used to simulate and analyze the size effect of water diversion fracture zone height. The simulation results show that the height of the water diversion fracture zone is positively correlated with the increase of mining thickness and working face width. When the mining thickness is 9m and the width of the working face is 240m, the height of the water diversion fracture zone is 115m, and the average distance between the coal layer 8 of Xinzhuang Coal Mine and the bottom of the Cretaceous aquifer is 106.9m, which may cause water inrush in the mine. Therefore, according to the simulation results and referring to the mining size of part of the mine face in the attached Binchang mining area, it is suggested that the mining thickness of Xinzhuang Coal Mine is about 10m and the width of the working face is not more than 200m.


2014 ◽  
Vol 25 (07) ◽  
pp. 877-896 ◽  
Author(s):  
MARTIN KUTRIB ◽  
ANDREAS MALCHER ◽  
MATTHIAS WENDLANDT

We investigate the descriptional complexity of deterministic one-way multi-head finite automata accepting unary languages. It is known that in this case the languages accepted are regular. Thus, we study the increase of the number of states when an n-state k-head finite automaton is simulated by a classical (one-head) deterministic or nondeterministic finite automaton. In the former case upper and lower bounds that are tight in the order of magnitude are shown. For the latter case we obtain an upper bound of O(n2k) and a lower bound of Ω(nk) states. We investigate also the costs for the conversion of one-head nondeterministic finite automata to deterministic k-head finite automata, that is, we trade nondeterminism for heads. In addition, we study how the conversion costs vary in the special case of finite and, in particular, of singleton unary lanuages. Finally, as an application of the simulation results, we show that decidability problems for unary deterministic k-head finite automata such as emptiness or equivalence are LOGSPACE-complete.


2000 ◽  
Vol 650 ◽  
Author(s):  
J. Rest ◽  
G. L. Hofman

ABSTRACTWe developed a rate-theory-based model to investigate the nucleation and growth of interstitial loops and cavities during low-temperature in-reactor irradiation of uranium-molybdenum alloys. Consolidation of the dislocation structure takes into account the generation of forest dislocations and capture of interstitial dislocation loops. The theoretical description includes stress-induced glide of dislocation loops and accumulation of dislocations on cell walls. The loops accumulate and ultimately evolve into a low-energy cellular dislocation structure. Calculations indicate that nanometer-size bubbles are associated with the walls of the cellular dislocation structure. The accumulation of interstitial loops within the cells and of dislocations on the cell walls leads to increasing values for the rotation (misfit) of the cell wall into a subgrain boundary and a change in the lattice parameter as a function of dose. Subsequently, increasing values for the stored energy in the material are shown to be sufficient for the material to undergo recrystallization. Results of the calculations are compared with SEM photomicrographs of irradiated U- 10Mo, as well as with data from irradiated UO2.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Y. Premkumar Singh ◽  
Amit Jain ◽  
Avinashi Kapoor

The paper investigates the light incoupling into c-Si solar cells due to the excitation of localized surface plasmon resonances in periodic metallic nanoparticles by finite-difference time-domain (FDTD) technique. A significant enhancement of AM1.5G solar radiation transmission has been demonstrated by depositing nanoparticles of various metals on the upper surface of a semi-infinite Si substrate. Plasmonic nanostructures located close to the cell surface can scatter incident light efficiently into the cell. Al nanoparticles were found to be superior to Ag, Cu, and Au nanoparticles due to the improved transmission of light over almost the entire solar spectrum and, thus, can be a potential low-cost plasmonic metal for large-scale implementation of solar cells.


Sign in / Sign up

Export Citation Format

Share Document