The Research on Modeling and Dynamic Simulation of Gear Box Virtual Prototype Based on Pro/E and ADAMS

2013 ◽  
Vol 681 ◽  
pp. 115-120
Author(s):  
Li Xia Qiao ◽  
Jun Ting Zhang

In this paper, the combination of Pro\/E and ADAMS to build a virtual prototype model of gear transmission, the dynamic simulation of the gear meshing process, study on dynamic speed, mesh force bearing load, where, for the gear box of the engineering analysis and optimization design. A 3D modeling and designing software, established a parametric model of a gear box of the rack and pinion drive mechanism, which is used in large gantry milling machine XK2425-600. The data interface module MECHANISM/Pro is used to convert the Pro/E model data to ADAMS, and then the virtual prototype is built in it. The rotational speeds, meshing forces, and reactive loads at bearings are obtained by dynamic simulation of the virtual prototype, which can be used in finite element analysis as boundary condition, helped to calculate the strength and stiffness of the box.

2014 ◽  
Vol 644-650 ◽  
pp. 199-202
Author(s):  
Pei Qin Wang ◽  
Zeng Shun Xu ◽  
Zuo Feng Sun ◽  
Hui Yuan Jiang

Based on theoretical calculation, virtual prototype technology and the method of finite element analysis, the fully mechanized hydraulic support is designed and simulated. Firstly, the four-link mechanism of hydraulic support mechanical model and mathematical model are established, the demission is confirmed by design calculation of structure. Secondly, through the establishment of rigid parameterized virtual prototype model of the system, dynamics simulation analysis and research is finished based on ADAMS on the mechanical properties. Finally, based on FEA, the modal calculation of key components is completed by using ANSYS.


2013 ◽  
Vol 385-386 ◽  
pp. 281-287
Author(s):  
Zhi Qiang Wang ◽  
Xue Liang Bian ◽  
You Ning Feng

Through analyzed the cleaning process of rear rolling type sweeper, the theoretical model of waste particle trajectory was established during the sweeper working process by using the contact theory of modern contact dynamics, and the ideal theory track of waste particle was simulated and optimized by using MATLAB. The three-dimensional solid model of the working device was created by using UG software, and virtual prototype model was completed by using ADAMS software, and rigid brush was replaced by neutral file with brush features characterize that was generated by finite element analysis software, and contact relationship of waste particle during the working process was added by ADAMS contact order, and rigid-flexible coupling virtual prototype system was completed and kinematics simulation was run. Finally, compared the trajectory curve from ADAMS simulation with the theoretical path from MATLAB, the Theoretical model was proved correctness. The theoretical research and simulation analysis was made test and verify each other. Facilitate the development of the same type of products.


2013 ◽  
Vol 753-755 ◽  
pp. 1011-1015
Author(s):  
Zai Xiang Pang ◽  
Lin An Gong ◽  
Da Wei Jiang ◽  
Tie Jun Liu

The strength and stiffness of humanoid massage robot arm are the main factors that they affect the dynamic characteristics and positioning accuracy under the action of the load. In order to analysis the strength and stiffness characteristics of humanoid massage robot arm. With SolidWorks we establish parametric model and by finite element analysis software ANSYS analyses the strength and stiffness of key parts and components. Emulational results show that the stiffness and strength of humanoid massage robot arm that we design and invent meet the design requirements, lay a foundation for further optimization design.


2012 ◽  
Vol 187 ◽  
pp. 138-145
Author(s):  
Wei Jing ◽  
Xu Jian Sun ◽  
Wei Sun ◽  
Ai Gui Guo

Gearbox is a key part and is more easily over loaded and it has a high failure rate in MW-class wind turbine. It is necessary to analyze, predict and optimize its static/dynamical behavior. It presents the performance of one type wind turbine gearbox and the static analysis results of the housing, spline and gear pairs of the wind turbine gearbox are obtained using finite element method. The natural frequency and modal shape of the gearbox are analyzed. The modification data of the flank shape for each class tooth alignment and tooth profiles are obtained from the analysis. The related data on the strength and stiffness of all the parts in wind turbine gearbox are provided. It lays a foundation for the reliability assessment and optimization design of wind turbine gearbox.


2021 ◽  
Author(s):  
Fankai Kong ◽  
Wenbo Cui ◽  
Fei Chen ◽  
Zhenyang Wang ◽  
Zhongchen Zhou

According to the insufficient force analysis of the cable in the process of winch retraction, especially the insufficient research on the flexible cable retraction process such as the UHMWPE cable, the dynamic simulation analysis of the retraction process of the parallel grooved multi-layer drum and UHMWPE cable cable is carried out by using the virtual prototype software ADAMS. The simulation model of the cable is created by using the macro command program, and the virtual prototype model of the cable drum is completed, and the force changes of the cable under different rotating speeds are simulated.The simulation results show that the contact force between the cable and the double winding drum can be quickly stable under the specific load, and with the increase of the rotating speed, the maximum value of the tension change of the cable increases, but it is finally stable at a fixed value. The results can provide some reference for structural strength calculation of cable storage drum, selection of high molecular polyethylene cable and dynamic analysis of cable arranger under load.


2014 ◽  
Vol 574 ◽  
pp. 173-178
Author(s):  
Ling Ling ◽  
Yong Huang

The virtual prototyping technology in corporation with a finite element analysis was first used to analyze the strength and stiffness of gearbox casing in an electric bus. On the basis of this analysis, the topology optimization technology (TOT) based on the variable density method was introduced into the design of gearbox casing which takes the minimized total flexibility of gearbox as the objective function, the density of each cell as the design variable and the volume as the design constraint. Then, according to the results of topology optimization and the requirements of manufacturing process, the structure of gearbox casing was designed in detail. Finally, the stress analysis of the housing model of the final design was carried out. The results show that the optimized housing not only meets the design requirements of stiffness and strength, but also reduces its quality, which can make the performance of gearbox achieve optimal.


2014 ◽  
Vol 687-691 ◽  
pp. 398-401 ◽  
Author(s):  
Yu Tang ◽  
Yu Hou Wu ◽  
Ke Zhang ◽  
Jia Sun ◽  
En Wei Song

Designed a new type of wind turbine internal maintenance lifting platform using three-dimensional drawing software SolidWorks to establish the 3D model for the internal maintenance lifting platform. Imported platform bridge part to ANSYS Workbench static and modal analysis module; make load analysis according to the wind turbine operating environment and platform’s most dangerous operating condition and obtain the maximum stress of platform bridge structure and place and form of deformation. Obtained multiple order natural frequency and vibration mode of platform bridge structure through modal analysis. Compared with the standard, it shows that this structure satisfies the strength and stiffness requirement and will generate frequency affecting human body higher than the nature frequency. This thesis provides a theoretical foundation for designing the wind driven generator internal lifting platform and provides a reference for optimization design.


2012 ◽  
Vol 157-158 ◽  
pp. 27-32
Author(s):  
Guang Lin Shi ◽  
Kun Wu ◽  
Lin Zhu

This paper based on a settled type of structure concerning hydraulic excavator rotary platform as the research object, use the method of finite element analysis to build the finite element model in the conditions of three typicals of representative working condition about this rotary platform. By the analysis concerning the strength and stiffness of this platform structure based on the builded model, the weak link about this structure can be find out by us. Finally , according to the optimization structure design about this device, the maximum combined stress related to the easy fatigue failure area in all working condition could be significantly reduced from 162.93MPa to 115.05MPa, decrease by 29.4 percent. Thus, the structure performance could be greatly improved on the premise of guarantee the weight of construction.


2012 ◽  
Vol 236-237 ◽  
pp. 1258-1264
Author(s):  
Yong Ming Wang ◽  
Chuan Hui Bao ◽  
Tong Hua Fan

Taking the wheel-legged lunar rover based on double-half-revolution mechanism as a research object, this paper has made a dynamics simulation for the simplified virtual prototype model of lunar rover under several typical road conditions, with the purpose of obtaining the mechanical data of the wheel-leg planetary mechanism shafts. On this basis, this paper established the finite element analysis model of the wheel-leg planetary mechanism shafts, and analyzed their stress by using finite element analysis software ANSYS. Based on ANSYS Parametric Design Language (APDL), the optimization design for the above shafts were done combined with the least-square approximation optimization method. The results show that the optimized shafts not only meet the strength requirement, but also their weights are about 30% lower than the original, which will provide a new and effective way for optimizing the whole wheel-leg structure of lunar rover.


2012 ◽  
Vol 490-495 ◽  
pp. 2769-2773
Author(s):  
Shi Hong Wu ◽  
Wen Yu Bao

No-tillage planter is researched by using virtual prototype technology and Each machine parts of no-tillage planter were modeled and simulated by solidworks software. the efficiency of the mechanical product development and design quality are improved, the development cycle is shorten, design cost is reduced. The simulation results show that ridge clearing coulter endpoint track, displacement, velocity and acceleration curve have been obtained through simulation are the same as theoretical analysis. The accuracy of theoretical analysis results is Verified, through the finite element analysis to residue breaking device of no-tillage planter, device stress, strain and displacement, and twisted, modal indexes under specified load are tested , providing the basis for further optimization design.


Sign in / Sign up

Export Citation Format

Share Document