Design and Simulation of Fully Mechanized Hydraulic Support

2014 ◽  
Vol 644-650 ◽  
pp. 199-202
Author(s):  
Pei Qin Wang ◽  
Zeng Shun Xu ◽  
Zuo Feng Sun ◽  
Hui Yuan Jiang

Based on theoretical calculation, virtual prototype technology and the method of finite element analysis, the fully mechanized hydraulic support is designed and simulated. Firstly, the four-link mechanism of hydraulic support mechanical model and mathematical model are established, the demission is confirmed by design calculation of structure. Secondly, through the establishment of rigid parameterized virtual prototype model of the system, dynamics simulation analysis and research is finished based on ADAMS on the mechanical properties. Finally, based on FEA, the modal calculation of key components is completed by using ANSYS.

2013 ◽  
Vol 441 ◽  
pp. 439-442
Author(s):  
Rui Ying Shao ◽  
Hong Jun Wang ◽  
Juan Song ◽  
Hai Yan Wang

Based on the theory research and virtual prototype technology, the dynamics characteristics of drum washing machine vibration isolation system is studied and analyzed. According to the Lagrange method, the dynamics equations and motion differential equations of drum washing machine vibration isolation system is established. Through the establishment of rigid parameterized virtual prototype model of the vibration system, dynamics simulation analysis is accomplished based on ADAMS, the kinematics characteristics and mechanical characteristics are obtained.


2013 ◽  
Vol 385-386 ◽  
pp. 281-287
Author(s):  
Zhi Qiang Wang ◽  
Xue Liang Bian ◽  
You Ning Feng

Through analyzed the cleaning process of rear rolling type sweeper, the theoretical model of waste particle trajectory was established during the sweeper working process by using the contact theory of modern contact dynamics, and the ideal theory track of waste particle was simulated and optimized by using MATLAB. The three-dimensional solid model of the working device was created by using UG software, and virtual prototype model was completed by using ADAMS software, and rigid brush was replaced by neutral file with brush features characterize that was generated by finite element analysis software, and contact relationship of waste particle during the working process was added by ADAMS contact order, and rigid-flexible coupling virtual prototype system was completed and kinematics simulation was run. Finally, compared the trajectory curve from ADAMS simulation with the theoretical path from MATLAB, the Theoretical model was proved correctness. The theoretical research and simulation analysis was made test and verify each other. Facilitate the development of the same type of products.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chenguang Li ◽  
Dimah Alahmadi ◽  
Mohammed Yousuf Abo Keir

Abstract In order to promote the development of sports training robots and improve the training of lower limbs in Sanda, a new mechanical structure of Sanda training robots is designed. The thesis combines the mathematical method of fractional differential equations to design a new type of omnidirectional moving platform mechanism, which realises the movement in any direction in the plane and can turn at any radius during the movement. From the perspective of kinematics, the mathematical relationship between wheel speed and robot trajectory is analysed, and a virtual prototype technology combined with Pro/E and Adams joint modelling and simulation method is used to establish an accurate and reliable virtual prototype model. The experimental simulation results show that the designed virtual prototype model is consistent with the mathematical model, which verifies the practical feasibility of the mechanical structure of the lower limb power generation robot for Sanda movement, and provides a reliable basis for the establishment of the physical prototype.


2013 ◽  
Vol 416-417 ◽  
pp. 1822-1825
Author(s):  
Ying Li Zu ◽  
Jin Wei

Based on the combination of the virtual prototype technology and dynamics simulation analysis software ADAMS of mechanical system, parameterized model ZL50 wheel loader equipment is established. According to the characteristics of the loading operation of equipment, with 18 parameters of the hinge point of inversion six-bar linkage as design variables, with loading operation performance index as the objective function, considering the structure and avoiding movement interference for constraint condition, multi-objective optimization design for the virtual prototype model of articulated point position is calculated.


2013 ◽  
Vol 791-793 ◽  
pp. 722-725
Author(s):  
Yu Li ◽  
Zhe Bo Zhou ◽  
Hai Lang Song ◽  
Man Man Xu

Cantilever is a key component of Mine Hydraulic Grilled Slag Machine and also is an important bearing member. Parametric analysis and optimization calculation should be done to meet the requirements of its strength and rigidity. It can reduce weight and stress concentration, which makes its structure size more reasonable. With the aid of Solid works 3D modeling software, people can create the working device model. Importing adams to create its virtual prototype model to make dynamics simulation analysis and draw variation graph of key points during its working process to lay the foundation for the finite element analysis.


2013 ◽  
Vol 351-352 ◽  
pp. 782-785
Author(s):  
Yong Bing Liu ◽  
Xiao Zhong Zhang

Established the mechanical model of simply supported deep beam, calculation and analysis of simple supported deep beams by using finite element analysis software ANSYS, simulated the force characteristics and work performance of the deep beam. Provides the reference for the design and construction of deep beams.


2014 ◽  
Vol 910 ◽  
pp. 344-347
Author(s):  
Deng Yun Ma ◽  
Tao Tao Li ◽  
Ke Sun ◽  
Jun Liang Wang ◽  
Ling Wan Li ◽  
...  

In view of the traditional low mechanization,degree of automation and lack of humanization etc, a n-ew intelligent and efficient pesticide spraying machine can be created to add pesticide to cotton.Completed parametric design of the device's virtual prototype by SolidWorks,and we apply virtual prototyping technologyto key parts to go on dynamics simulation analysis,to verify the reasonableness of this mechanism design and correctness of the function to achieve.


2012 ◽  
Vol 479-481 ◽  
pp. 2351-2354 ◽  
Author(s):  
Bing Wu ◽  
Zen Ju Wei

Obstacle robot crawler is a very complex mechanical products. Crawler robot obstacle for traditional development pattern of the development cycle there is a long, complicated process, development costs are too high, difficult issues such as performance testing, this twin-tracked to the more impaired actual robot context of the study, the application of simulation technology robot design and development research. Use of 3D modeling software Pro / E and two-body dynamics simulation software to create more obstacles the robot tracked the virtual prototype model, the virtual prototype model based on a variety of simulation experiments, and the test results analysis.


2012 ◽  
Vol 233 ◽  
pp. 224-227 ◽  
Author(s):  
Tao Yong Zhou ◽  
Bin Hu ◽  
Xue Jun Wang ◽  
Bo Yan

Railway ballast tamping operations is an important work in the line maintenance and repair operations, the selection of tamping parameter is usually dependent on field trials and practical experience, for the mechanical properties of railway ballast is difficult to measure and describe. This paper creates discrete element analysis model of railway ballast using the discrete element method, the numerical simulations are carried out to study the mechanical properties of railway ballast during tamping process. We focus on the influence of amplitude during tamping process; an optimal amplitude of the simulation analysis is obtained and compared with the recommended amplitude of Plasser & Theurer Company, it is found that the two amplitudes accord. This result verifies the correct validity of the discrete element analysis model of railway ballast during tamping process.


2013 ◽  
Vol 477-478 ◽  
pp. 45-48
Author(s):  
Qing Dun Zeng ◽  
Xin Pan

The joint simulation of Virtual Prototype Technology and Finite Element Method was utilized to perform the analysis of both strength and fatigue life of the input axis in a six-speed vehicle transmission with three axes. Firstly, the software Pro/E was used to establish a 3-D model of the input axis and its gear engagement, and the model was then imported into a software ADMAS of the virtual prototype technology to perform a dynamic simulation analysis. Secondly, the gear contact forces obtained by above-mentioned analysis were used as the loading condition of finite element analysis of the input axis to check its strength. Finally, the fatigue of meshing teeth on the input axis was analyzed to determine the fatigue life of the input axis. The results show that the static strength of input axis can meet the requirement of safe use under the working condition of input torque T=1.5kN·m, and the minimum fatigue life on the place where the stress is maximum at flexural root of a tooth is about 2 million times.


Sign in / Sign up

Export Citation Format

Share Document