Functionally Graded Structures through Building Manufacturing

2013 ◽  
Vol 683 ◽  
pp. 775-778 ◽  
Author(s):  
Flávio Craveiro ◽  
Helena Bártolo ◽  
Paulo J. Bártolo

The construction industry is facing an increasing pressure to optimize its performance reducing costs and minimizing its impact on the environment. The built environment is a very demanding human and dynamic environment facing rising challenges to develop more innovative and efficient solutions. New technologies, growing client expectations and a shift in design thinking are motivating radical improvements in the construction sector towards more integrated systems through computational fabrication processes. A RapidConstruction System was developed based on extrusion-based technologies to enable the construction of eco-efficient buildings with complex forms and geometries. The optimization of this new system will enable to integrate the concept of material space, material composition information of building heterogeneous components with geometry information, assigning different spatial features according to requirements. This new 3D digital processing system was used to fabricate functional graded structural components with different material compositions, so its functional requirements can vary with location. The development of this multi-material deposition system is ongoing to enable the fabrication of more efficient structures regarding thermal, acoustic and structural conditions.

Author(s):  
Flávio Craveiro ◽  
João Meneses de Matos ◽  
Helena Bártolo ◽  
Paulo Bártolo

Traditionally the construction sector is very conservative, risk averse and reluctant to adopt new technologies and ideas. The construction industry faces great challenges to develop more innovative and efficient solutions. In recent years, significant advances in technology and more sustainable urban environments has been creating numerous opportunities for innovation in automation. This paper proposes a new system based on extrusion-based technologies aiming at solving some limitations of current technologies to allow a more efficient building construction with organic forms and geometries, based on sustainable eco principles. This novel approach is described through a control deposition software. Current modeling techniques focus only on capturing the geometric information and cannot satisfy the requirements from modeling the components made of multi-heterogeneous materials. There is a great deal of interest in tailoring structures so the functional requirements can vary with location. The proposed functionally graded material deposition (FGM) system will allow a smooth variation of material properties to build up more efficient buildings regarding thermal, acoustic and structural conditions.


Author(s):  
V. Senthilkumar ◽  
Velmurugan C. ◽  
K. R. Balasubramanian ◽  
M. Kumaran

Additive manufacturing (AM) technology can be employed to produce multimaterial parts. In this approach, multiple types of materials are used for the fabrication of a single part. Custom-built functionally graded, heterogeneous, or porous structures and composite materials can be fabricated thorough this process. In this method, metals, plastics, and ceramics have been used with suitable AM methods to obtain multi-material products depending on functional requirements. The process of making composite materials by AM can either be performed during the material deposition process or by a hybrid process in which the combination of different materials can be performed before or after AM as a previous or subsequent stage of production of a component. Composite processes can be employed to produce functionally graded materials (FGM).


Author(s):  
A. V. Crewe ◽  
M. Ohtsuki

We have assembled an image processing system for use with our high resolution STEM for the particular purpose of working with low dose images of biological specimens. The system is quite flexible, however, and can be used for a wide variety of images.The original images are stored on magnetic tape at the microscope using the digitized signals from the detectors. For low dose imaging, these are “first scan” exposures using an automatic montage system. One Nova minicomputer and one tape drive are dedicated to this task.The principal component of the image analysis system is a Lexidata 3400 frame store memory. This memory is arranged in a 640 x 512 x 16 bit configuration. Images are displayed simultaneously on two high resolution monitors, one color and one black and white. Interaction with the memory is obtained using a Nova 4 (32K) computer and a trackball and switch unit provided by Lexidata.The language used is BASIC and uses a variety of assembly language Calls, some provided by Lexidata, but the majority written by students (D. Kopf and N. Townes).


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 882
Author(s):  
M. Munzer Alseed ◽  
Hamzah Syed ◽  
Mehmet Cengiz Onbasli ◽  
Ali K. Yetisen ◽  
Savas Tasoglu

Civil wars produce immense humanitarian crises, causing millions of individuals to seek refuge in other countries. The rate of disease prevalence has inclined among the refugees, increasing the cost of healthcare. Complex medical conditions and high numbers of patients at healthcare centers overwhelm the healthcare system and delay diagnosis and treatment. Point-of-care (PoC) testing can provide efficient solutions to high equipment cost, late diagnosis, and low accessibility of healthcare services. However, the development of PoC devices in developing countries is challenged by several barriers. Such PoC devices may not be adopted due to prejudices about new technologies and the need for special training to use some of these devices. Here, we investigated the concerns of end users regarding PoC devices by surveying healthcare workers and doctors. The tendency to adopt PoC device changes is based on demographic factors such as work sector, education, and technology experience. The most apparent concern about PoC devices was issues regarding low accuracy, according to the surveyed clinicians.


Author(s):  
Serge Abrate

The behavior of functionally graded structures has received a great deal of attention in recent years. Usually, these structures are made out of a composite material with a modulus of elasticity, a Poisson’s ratio, and a density that vary through the thickness. The non-uniformity through the thickness introduces coupling between the transverse deformations and the deformations of the mid-surface. Previous publications have shown how to account for these added complexities and have presented extensive results in tabular form. In this article, available results are used to show that the behavior of functionally graded shells is similar to that of homogeneous isotropic shells. It is well known that for isotropic shells, results can be presented in non-dimensional form so that, once results are obtained for one material, they can be simply scaled to obtain the corresponding results for shells made out of another material. The same can then be done for functionally graded shells. In addition, if functionally graded shells behave like homogeneous shells, no new method of analysis is required. The second part of the paper examines why this is true.


2010 ◽  
Vol 3 (1) ◽  
Author(s):  
Lizzy Bleumers ◽  
Kris Naessens ◽  
An Jacobs

This article introduces Proxy Technology Assessment (PTA) as a methodological approach that can widen the scope of virtual world and game research. Studies of how people experience virtual worlds and games often focus on individual in-world or in-game experiences. However, people do not perceive these worlds and games in isolation. They are embedded within a social context that has strongly intertwined online and offline components. Studying virtual experiences while accounting for these interconnections calls for new methodological approaches. PTA answers this call.Combining several methods, PTA can be used to investigate how new technology may impact and settle within people's everyday life (Pierson et al., 2006). It involves introducing related devices or applications, available today, to users in their natural setting and studying the context-embedded practices they alter or evoke. This allows researchers to detect social and functional requirements to improve the design of new technologies. These requirements, like the practices under investigation, do not stop at the outlines of a magic circle (cf. Huizinga, 1955).We will start this article by contextualizing and defining PTA. Next, we will describe the practical implementation of PTA. Each step of the procedure will be illustrated with examples and supplemented with lessons learned from two interdisciplinary scientific projects, Hi-Masquerade and Teleon, concerned with how people perceive and use virtual worlds and games respectively.


Sign in / Sign up

Export Citation Format

Share Document