Finite Element Analysis of Rubber Sealing Ring Resilience Behavior

2013 ◽  
Vol 705 ◽  
pp. 410-414
Author(s):  
Jia Qu ◽  
Geng Chen ◽  
Yu Wei Yang

In this paper, hyper-elastic constitutive models of rubber material have been summed up based on constitutive relation and the Mooney-Rivlin model has been pay more attention. Then through the tension experimental test, data of sealing material under axial experimental are obtained, and M-R model parameters C10 and C01 are fitted by ANSYS. After obtaining the material parameters, compression deformation behavior and the distribution of stress field and resilience behavior of the seal ring are simulated by using ANSYS/LS-DYNA software under different loading conditions.

2012 ◽  
Vol 503-504 ◽  
pp. 1094-1099
Author(s):  
Wen Tao Wang ◽  
Wen Bin Shang Guan

Fitting accuracy of hyper-elastic constitutive models of rubber and parameter identification of the models play important roles in the finite element analysis of rubber components. In this paper, to obtain stress-strain characteristics, uniaxial and planar as well as biaxial tension of a standard rubber sample are measured. Model parameters of three kinds of classic constitutive models are identified using least square method. Then, the fitting accuracy among different models is compared. The comparison shows that the fitting accuracy is getting higher when the test material strain is increased. Also, it can be concluded that Mooney-Rivlin model and Van der Waals model as well as third-order Ogden model have relatively stable fitting accuracy.


2013 ◽  
Vol 275-277 ◽  
pp. 28-32 ◽  
Author(s):  
Ming Li ◽  
Xiao Ling Hu ◽  
Wen Bo Luo ◽  
You Jian Huang ◽  
Ji Ling Bu

Mooney-Rivlin model and Ogden model are frequently used by engineers for finite element analysis of rubber material. Before simulation, simple, biaxial and planar extension tests are always done to get the model parameters. In this paper, we compare these two hyperelastic models with experimental data produced under simple, biaxial extension and planar extension loading conditions. The ability of the two models to reproduce different deformation modes is analyzed. Both material parameters and the stretch range of validity of each model are determined.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 988 ◽  
Author(s):  
Dingxin Leng ◽  
Kai Xu ◽  
Liping Qin ◽  
Yong Ma ◽  
Guijie Liu

Rubber materials are extensively utilized for vibration mitigation. Creep is one of the most important physical properties in rubber engineering applications, which may induce failure issues. The purpose of this paper is to provide an engineering approach to evaluate creep performance of rubber systems. Using a combination of hyper-elastic strain energy potential and time-dependent creep damage function, new creep constitutive models were developed. Three different time-decay creep functions were provided and compared. The developed constitutive model was incorporated with finite element analysis by user subroutine and its engineering potential for predicting the creep response of rubber vibration devices was validated. Quasi-static and creep experiments were conducted to verify numerical solutions. The time-dependent, temperature-related, and loading-induced creep behaviors (e.g., stress distribution, creep rate, and creep degree) were explored. Additionally, the time–temperature superposition principle was shown. The present work may enlighten the understanding of the creep mechanism of rubbers and provide a theoretical basis for engineering applications.


2011 ◽  
Vol 117-119 ◽  
pp. 1629-1632
Author(s):  
Jun Qi Qin ◽  
Yu Liang Yang ◽  
Chang Chun Di ◽  
Shou Qiang Guan

Rubber waveform generators are widely used in impact test devices for generating shock waves. Through stretching and compressing rubber specimens, obtain the stress-strain relationship of rubber material. Build finite element model of rubber waveform generator, get the maximum static deformation and static stiffness in different forms of constitutive models and take actual tests of rubber waveform generator. Compare finite element results with the actual test results, select Arruda-Boyce model as rubber hyperelastic model. This study lay a good foundation for the design of rubber waveform generators and study of dynamic characteristics of impact test devices.


2020 ◽  
Author(s):  
Babak N. Safa ◽  
Michael H. Santare ◽  
C. Ross Ethier ◽  
Dawn M. Elliott

AbstractDetermining tissue biomechanical material properties from mechanical test data is frequently required in a variety of applications, e.g. tissue engineering. However, the validity of the resulting constitutive model parameters is the subject of debate in the field. Common methods to perform fitting, such as nonlinear least-squares, are known to be subject to several limitations, most notably the uniqueness of the fitting results. Parameter optimization in tissue mechanics often comes down to the “identifiability” or “uniqueness” of constitutive model parameters; however, despite advances in formulating complex constitutive relations and many classic and creative curve-fitting approaches, there is no accessible framework to study the identifiability of tissue material parameters. Our objective was to assess the identifiability of material parameters for established constitutive models of fiber-reinforced soft tissues, biomaterials, and tissue-engineered constructs. To do so, we generated synthetic experimental data by simulating uniaxial tension and compression tests, commonly used in biomechanics. We considered tendon and sclera as example tissues, using constitutive models that describe these fiber-reinforced tissues. We demonstrated that not all of the model parameters of these constitutive models were identifiable from uniaxial mechanical tests, despite achieving virtually identical fits to the stress-stretch response. We further show that when the lateral strain was considered as an additional fitting criterion, more parameters are identifiable, but some remain unidentified. This work provides a practical approach for addressing parameter identifiability in tissue mechanics.Statement of SignificanceData fitting is a powerful technique commonly used to extract tissue material parameters from experimental data, and which thus has applications in tissue biomechanics and engineering. However, the problem of “uniqueness” or “identifiability” of the fit parameters is a significant issue, limiting the fit results’ validity. Here we provide a novel method to evaluate data fitting and assess the uniqueness of results in the tissue mechanics constitutive models. Our results indicate that the uniaxial stress-stretch experimental data are not adequate to identify all the tissue material parameters. This study is of potential interest to a wide range of readers because of its application for the characterization of other engineering materials, while addressing the problem of uniqueness of the fitted results.


2020 ◽  
Vol 25 (10) ◽  
pp. 1851-1872 ◽  
Author(s):  
L Angela Mihai ◽  
Alain Goriely

For monodomain nematic elastomers, we construct generalised elastic–nematic constitutive models combining purely elastic and neoclassical-type strain energy densities. Inspired by recent developments in stochastic elasticity, we extend these models to stochastic–elastic–nematic forms, where the model parameters are defined by spatially independent probability density functions at a continuum level. To investigate the behaviour of these systems and demonstrate the effects of the probabilistic parameters, we focus on the classical problem of shear striping in a stretched nematic elastomer for which the solution is given explicitly. We find that, unlike the neoclassical case, where the inhomogeneous deformation occurs within a universal interval that is independent of the elastic modulus, for the elastic–nematic models, the critical interval depends on the material parameters. For the stochastic extension, the bounds of this interval are probabilistic, and the homogeneous and inhomogeneous states compete, in the sense that both have a a given probability to occur. We refer to the inhomogeneous pattern within this interval as ‘likely striping’.


Author(s):  
Sai Sudharsanan Paranjothy ◽  
Ganesh Subbarayan ◽  
Dae Young Jung ◽  
Bahgat G. Sammakia

Due to its superior mechanical and electrical properties, as well as low cost, Cu is gradually replacing Au as wire bonding material. However, since copper is a stiffer material, it requires greater bonding force, which in turn increases risk of bond pad cratering and inter-layer dielectric (ILD) fracture. A critical challenge to numerically modeling the pad cratering or ILD fracture is the availability of appropriate constitutive models for the Cu free-air balls (FAB). In this work we first present rate and temperature dependent force-displacement response of micron-sized Cu FAB characterized using a custom-built high-precision microtester. From the experimental force-displacement data, Anand viscoplastic constitutive model parameters are obtained using an inverse finite element analysis procedure, where the material parameters are iterated through an automated procedure until the finite element and experimental force-displacement responses match. The constitutive model parameters to describe the FAB behavior at low and intermediate strain rates and at high temperatures are obtained and reported in this paper.


2008 ◽  
Vol 36 (1) ◽  
pp. 63-79 ◽  
Author(s):  
L. Nasdala ◽  
Y. Wei ◽  
H. Rothert ◽  
M. Kaliske

Abstract It is a challenging task in the design of automobile tires to predict lifetime and performance on the basis of numerical simulations. Several factors have to be taken into account to correctly estimate the aging behavior. This paper focuses on oxygen reaction processes which, apart from mechanical and thermal aspects, effect the tire durability. The material parameters needed to describe the temperature-dependent oxygen diffusion and reaction processes are derived by means of the time–temperature–superposition principle from modulus profiling tests. These experiments are designed to examine the diffusion-limited oxidation (DLO) effect which occurs when accelerated aging tests are performed. For the cord-reinforced rubber composites, homogenization techniques are adopted to obtain effective material parameters (diffusivities and reaction constants). The selection and arrangement of rubber components influence the temperature distribution and the oxygen penetration depth which impact tire durability. The goal of this paper is to establish a finite element analysis based criterion to predict lifetime with respect to oxidative aging. The finite element analysis is carried out in three stages. First the heat generation rate distribution is calculated using a viscoelastic material model. Then the temperature distribution can be determined. In the third step we evaluate the oxygen distribution or rather the oxygen consumption rate, which is a measure for the tire lifetime. Thus, the aging behavior of different kinds of tires can be compared. Numerical examples show how diffusivities, reaction coefficients, and temperature influence the durability of different tire parts. It is found that due to the DLO effect, some interior parts may age slower even if the temperature is increased.


2021 ◽  
Vol 8 (3) ◽  
pp. 32
Author(s):  
Dimitrios P. Sokolis

Multiaxial testing of the small intestinal wall is critical for understanding its biomechanical properties and defining material models, but limited data and material models are available. The aim of the present study was to develop a microstructure-based material model for the small intestine and test whether there was a significant variation in the passive biomechanical properties along the length of the organ. Rat tissue was cut into eight segments that underwent inflation/extension testing, and their nonlinearly hyper-elastic and anisotropic response was characterized by a fiber-reinforced model. Extensive parametric analysis showed a non-significant contribution to the model of the isotropic matrix and circumferential-fiber family, leading also to severe over-parameterization. Such issues were not apparent with the reduced neo-Hookean and (axial and diagonal)-fiber family model, that provided equally accurate fitting results. Absence from the model of either the axial or diagonal-fiber families led to ill representations of the force- and pressure-diameter data, respectively. The primary direction of anisotropy, designated by the estimated orientation angle of diagonal-fiber families, was about 35° to the axial direction, corroborating prior microscopic observations of submucosal collagen-fiber orientation. The estimated model parameters varied across and within the duodenum, jejunum, and ileum, corroborating histologically assessed segmental differences in layer thicknesses.


Sign in / Sign up

Export Citation Format

Share Document