Process Analysis of Ocean Thermal Energy Used for Desalination

2013 ◽  
Vol 724-725 ◽  
pp. 1242-1248
Author(s):  
Zhi Jiang Jin ◽  
Hao Wang

Ocean thermal energy (OTE) is a kind of ocean energy with a large development potential. In this paper, a new method making direct use of OTE for desalination was put forward and its principles and working process were also expounded. Firstly, this paper established the relevant process model of OTE desalination system. The system used OTE to maintain a vacuum and seawater could be evaporated at a much lower temperature and with less energy than conventional technique. Secondly, a parametric study was carried out quantitatively. It analyzed the influence on the system’s operation of three main parameters (temperature, mass flow and energy consumption). Finally, this paper improved the energy efficiency of the system. The lowest unit energy consumption could reach 4.54kWh/m3. The results indicate the feasibility of OTE used for desalination and its competitiveness against common solar desalination method.

2021 ◽  
Vol 11 (15) ◽  
pp. 7086
Author(s):  
Qingchao Xia ◽  
Gul Muhammad ◽  
Bingzhe Chen ◽  
Feng Zhang ◽  
Zhifeng Zhang ◽  
...  

An underwater profiler is one of the popular platforms for ocean observation. Due to energy limitations, conventional underwater vehicles have a short life span, which cannot meet the needs of long-term ocean exploration. Therefore, there is a growing interest in using ocean energy such as ocean thermal energy and wave energy for driving. This study aimed to investigate an energy-saving and ocean thermal energy (OTE)-powered buoyancy driving system of the ocean profiler. The purpose of this study was to explore an ocean profiler buoyancy driving system powered by ocean thermal energy (OTE). According to the seawater profile temperature gradient, an OTE-powered electro-hydraulic control system was designed, and the dynamic characteristics of this system are simulated and analyzed by using the power bonding diagram method. Based on the results conducted from lake tests, this profiler possesses the self-driving capability for using OTE perfectly. This research can provide important guidance for the design of the buoyancy drive system of underwater vehicles.


2022 ◽  
Vol 12 (1) ◽  
pp. 78
Author(s):  
Shahid Amjad

There is potential for harnessing renewable energy from coastal waves and tides, from the coastal and offshore areas of Pakistan. The Sindh coast is a complex creek network located in the 170 km of the Indus deltaic area. The flood and ebb of tides in and out of these creeks have a high velocity of 0.2–0.5 m/s. NIO Pakistan has conducted preliminary feasibility surveys for energy extraction from the Indus deltaic creek system. The 17 major creeks have the capacity to produce estimated energy of approximately 1100 MW. The seawater ingresses inland at some places up to 80 km due to the tidal fluctuation, which is favorable for energy extraction from tidal currents in coastal Sindh. In total, 71% of our Planet Earth is covered by the oceans. The oceans are massive collectors of solar radiation received from the sun. The oceans store the potential energy that is received in the form of incident radiation from the sun that generates thermal energy. A 10 °C temperature difference can be harnessed between the surface and bottom water, using a working fluid. The thermal difference absorbed by the oceans can be converted into electricity through ocean thermal energy conversion (OTEC). The ocean tidal and wave energy has advantages over energy produced using different fossil fuels; there are also several benefits of using renewable sources of ocean energy. Viability of ocean energy in Pakistan is discussed in this paper.


Author(s):  
I. Riabova ◽  
A. Hariev ◽  
L. Hariev ◽  
K. Gorbunov

Today, ethyl alcohol is widely used in many industries. Ethanol production processes from any organic matter often involve rectification, which is an energy-intensive process. The constant increase in the cost of energy leads to a significant growth of the cost of production. Reducing the unit energy consumption can solve a range of important issues: first, that of decreasing production cost, and secondly, that of nationwide dependence on external energy suppliers. A detailed analysis of the thermal energy potential of technological flows aimed at solving the problem of reducing energy consumption inspires the development of more energy-efficient solutions for organizing this processes. The search for alternative solutions demonstrates that one of the methods of reducing the unit energy consumption for ethanol production, in particular one that does not require a total restructuring of the production lines, is the method of integration of processes based on pinch analysis. The extraction of these technological flows was carried out on the basis of the regulatory documentation of the hardware-technological scheme of the centralized ethyl alcohol head fraction distillation plant and the energy audit report of that plant, which was carried out at one of the alcohol enterprises of Ukraine. A distillation and a purification column were selected from the centralized ethyl alcohol distillation plant for thermal integration of the existing process. The thermal and material balances of the ethyl alcohol head fraction distillation plant columns were calculated. To maximize the energy potential of the heat flows, the principles of pinch design were applied and a grid diagram of heat exchanger networks was designed. To maximize the recovery of thermal energy, the difference ΔTmin was set to - 3ºC. This led to the need to use energy-efficient heat exchange equipment. A significant reduction in the use of external utilities (by 48% for cold utilitie and by 38% for hot utilitie) for selected heat flows and a short payback period for the project (approximately three months) makes this solution viable.


Renewable ocean energy sources can eventually supply a large fraction of man’s energy needs, starting in the 1990s. Their use will require technologies for converting to useful form such naturally occurring ocean phenomena as tides, currents, waves, salinity gradients and thermal gradients. In view of the technology’s substantial resource potential, its comparatively advanced stage of development among the ocean energy options, and other relatively attractive features, this paper focuses on ocean thermal energy conversion (OTEC). However, much of the paper’s content has relevance to the use of the other ocean energy sources. Techniques of ocean thermal energy conversion are summarized, along with the development status of the required power system and ocean system components. The worldwide ocean thermal resource is assessed as a function of geography and time. Environmental impacts and siting considerations are treated. Diverse commercial market applications of OTEC are summarized, based upon the two key options for OTEC of providing electricity by submarine cable and of manufacturing energy-intensive products for shipment to dispersed markets. By-products of OTEC such as fresh water and nutrients for mariculture are discussed. The constructability and deployment of OTEC systems are considered in the context of their overlap with the related technology for building and deploying offshore petroleum facilities. Much offshore petroleum industry technology and many of its construction facilities are shown to be relevant to OTEC requirements. OTEC cost projections are related to the competitive costs of other sources of continuous electrical energy. The prospects for the emergence of a commercial OTEC industry in the 1990s are analysed, including a description of OTEC development activity in various nations. Scenarios for the industrial development of commercial OTEC plants and plantships are presented for electricity applications and for energy-intensive products such as ammonia, hydrogen and aluminium. Economic, financial and international impacts of OTEC are explored. Market penetration forecasts for the 1990s are obtained, with a consideration of the problems and potential of the large early market in developing nations for OTEC-derived electricity. It is shown how OTEC-derived electricity and products, by increasing energy supply in an energy-interdependent world, could help reduce foreseeable polarizations between nations over limited global energy resources.


1992 ◽  
Vol 26 (3-4) ◽  
pp. 753-762 ◽  
Author(s):  
A. F. Rozich

The purpose of this paper is to present the background and examples of methodology which enable environmental engineers and scientists to analyze activated sludge processes much more effectively than is otherwise possible with conventional approaches. Good process analyses are key for devising optimal design and operational strategies. The key features to the technique presented herein are the field-proven predictability of the model and the methodology for collecting data needed for calibrating the process model. Case histories prove the predictability of the model that is associated with the process analysis approach. The advantage of the approach advocated herein is the use of respirometric techniques to calibrate the model. These methods enable the process analyst to collect the requisite data for model calibration in twenty-four hours or less. This feature enables one to use this process analysis methodology for both design and operational applications. The paper will present the technical basis for the process model and how respirometric methods are utilized to compute biokinetic constants in a manner which is consistent with kinetic theory. Case histories will be discussed that demonstrate the predictability of the modeling approach and demonstrate the utility of this tool for process analysis.


Sign in / Sign up

Export Citation Format

Share Document