scholarly journals Harnessing Ocean Energy from Coastal and Offshore Pakistan

2022 ◽  
Vol 12 (1) ◽  
pp. 78
Author(s):  
Shahid Amjad

There is potential for harnessing renewable energy from coastal waves and tides, from the coastal and offshore areas of Pakistan. The Sindh coast is a complex creek network located in the 170 km of the Indus deltaic area. The flood and ebb of tides in and out of these creeks have a high velocity of 0.2–0.5 m/s. NIO Pakistan has conducted preliminary feasibility surveys for energy extraction from the Indus deltaic creek system. The 17 major creeks have the capacity to produce estimated energy of approximately 1100 MW. The seawater ingresses inland at some places up to 80 km due to the tidal fluctuation, which is favorable for energy extraction from tidal currents in coastal Sindh. In total, 71% of our Planet Earth is covered by the oceans. The oceans are massive collectors of solar radiation received from the sun. The oceans store the potential energy that is received in the form of incident radiation from the sun that generates thermal energy. A 10 °C temperature difference can be harnessed between the surface and bottom water, using a working fluid. The thermal difference absorbed by the oceans can be converted into electricity through ocean thermal energy conversion (OTEC). The ocean tidal and wave energy has advantages over energy produced using different fossil fuels; there are also several benefits of using renewable sources of ocean energy. Viability of ocean energy in Pakistan is discussed in this paper.

2016 ◽  
Vol 10 (5) ◽  
pp. 32 ◽  
Author(s):  
Ashrafoalsadat Shekarbaghani

Two-thirds of the earth's surface is covered by oceans. These bodies of water are vast reservoirs of renewable energy.<strong> </strong>Ocean Thermal Energy Conversion technology, known as OTEC, uses the ocean’s natural thermal gradient to generate power. In geographical areas with warm surface water and cold deep water, the temperature difference can be leveraged to drive a steam cycle that turns a turbine and produces power. Warm surface sea water passes through a heat exchanger, vaporizing a low boiling point working fluid to drive a turbine generator, producing electricity. OTEC power plants exploit the difference in temperature between warm surface waters heated by the sun and colder waters found at ocean depths to generate electricity. This process can serve as a base load power generation system that produces a significant amount of renewable, non-polluting power, available 24 hours a day, seven days a week. In this paper investigated the potential of capturing electricity from water thermal energy in Iranian seas (Caspian Sea, Persian Gulf and Oman Sea). According to the investigated parameters of OTEC in case study areas, the most suitable point in Caspian Sea for capturing the heat energy of water is the south part of it which is in the neighborhood of Iran and the most suitable point in the south water of Iran, is the Chahbahar port.


2013 ◽  
Vol 724-725 ◽  
pp. 1242-1248
Author(s):  
Zhi Jiang Jin ◽  
Hao Wang

Ocean thermal energy (OTE) is a kind of ocean energy with a large development potential. In this paper, a new method making direct use of OTE for desalination was put forward and its principles and working process were also expounded. Firstly, this paper established the relevant process model of OTE desalination system. The system used OTE to maintain a vacuum and seawater could be evaporated at a much lower temperature and with less energy than conventional technique. Secondly, a parametric study was carried out quantitatively. It analyzed the influence on the system’s operation of three main parameters (temperature, mass flow and energy consumption). Finally, this paper improved the energy efficiency of the system. The lowest unit energy consumption could reach 4.54kWh/m3. The results indicate the feasibility of OTE used for desalination and its competitiveness against common solar desalination method.


2021 ◽  
Vol 9 ◽  
Author(s):  
M. Luisa Martínez ◽  
Rodolfo Silva ◽  
Janaina Garcia

The oceans represent almost 70% of the surface of our planet, and they are in constant movement through waves, tides, and currents. These movements are formed differently: waves develop because of the action of the wind; tides because of the moon and the sun, and currents because of differences in water temperature and the rotation of the planet. Ocean movements bring food and oxygen to the plants and animals that live in the oceans and on the coasts. Waves and tides also help shape the coastline by erosion and accumulation of sand. Ocean movement is also important for humans: we have fun swimming in the waves, the tides help with fishing, and the currents are useful for moving ships across the ocean. This unending movement of the ocean can also be used to produce clean, renewable electric power.


2014 ◽  
Vol 126 (2) ◽  
pp. 34
Author(s):  
Timothy D. Finnigan

The ocean represents an enormous store of renewable energy – far more than could ever be used by the global population. The challenge is: how do we go about extracting this energy in a sustainable and economical way? It is the sun and the moon that give us this energy, in the form of waves, tides and thermal gradients. The amount of energy stored in the ocean, and continually replenished by the sun and moon, is well quantified, and certifiably massive. Despite decades of effort, attempts to extract meaningful quantities of energy from these ocean sources continue to be met with monumental challenges. Given the anticipated growth in energy demand, and continuing concern with the use of fossil fuels, it is now time to push through the barriers. The most widespread and easily tapped sources of ocean energy are surface waves and tidal currents. This presentation will focus on these two sources only.


2022 ◽  
pp. 173-207
Author(s):  
Umesh Agarwal ◽  
Naveen Jain ◽  
Manoj Kumawat

Until the middle of 20th century, there was a strong conviction that the next century would be the age of renewable and nuclear energy resources. However, at present, the whole world is dependent on fossil fuels to satisfy their energy need. Environmental pollution and global warming are the main issues associated with the use of fossil fuels for electricity generation. As per the report of US Energy Information IE Outlook 2016, coal, natural gas, and petroleum share nearly 67.2% of global electricity generation whereas renewable energy shares only 21.9%. This share is only one-fifth of the global electricity demand. According to the IEA 2016 Medium Term Renewable Energy Market Report, worldwide power production capacity of marine was only 539 MW in 2014, and to reach at a level of 640 MW, it will take 2021. The oceans cover about 70% of the Earth and acts as the largest thermal energy collector. A recent study reveals that global development capability of ocean energy is approximated to be 337 GW, and more than 885 TWH of electricity can be produced from this potential.


2017 ◽  
Vol 379 ◽  
pp. 140-148
Author(s):  
Jung In Yoon ◽  
Ho Saeng Lee ◽  
Chang Hyo Son ◽  
Sung Hoon Seol ◽  
Kwang Seok Lee ◽  
...  

This study proposes a system called 'dual system of cooling-thermal energy conversion applying ejector', which practically applies an ejector to an ocean thermal energy conversion (OTEC) system. The proposed system presents higher system efficiency, owing to the application of an ejector, and reduced initial and operating costs. The main results, obtained from simulation analysis, are as follows: the cooling capacity tended to decrease as the entrainment ratio increased, and the system using R134a generally presented the highest cooling capacity and COP. In terms of generation system, the highest turbine gross power was obtained when the R134a working fluid was applied. The efficiency of the system decreased as the entrainment ratio increased. Finally, the application of the ejector enhanced the efficiency of the generation system, using R134a, by approximately 50%, from 4.73% to 7.10% at the entrainment ratio of 0.1.


Author(s):  
James H. Anderson

Ocean thermal energy plants are thermal power plants that use warm ocean surface water as a source of heat and cold seawater from the deep ocean as a heat sink. A historical perspective along with the development of the technology will be presented. A short description describing the subtle differences between OTEC and fossil and nuclear plants will be presented. Open cycle OTEC and closed cycle OTEC will be described with a focus on the influence of choice of working fluid on the design of a plant. Various working fluids could be selected for use in closed cycle OTEC plants. A review and comparison of potential working fluids will address the advantages and disadvantages of the individual fluids. Their characteristics along with a comparison to water as a working fluid in open cycle OTEC will be explained.


2021 ◽  
Vol 11 (15) ◽  
pp. 7086
Author(s):  
Qingchao Xia ◽  
Gul Muhammad ◽  
Bingzhe Chen ◽  
Feng Zhang ◽  
Zhifeng Zhang ◽  
...  

An underwater profiler is one of the popular platforms for ocean observation. Due to energy limitations, conventional underwater vehicles have a short life span, which cannot meet the needs of long-term ocean exploration. Therefore, there is a growing interest in using ocean energy such as ocean thermal energy and wave energy for driving. This study aimed to investigate an energy-saving and ocean thermal energy (OTE)-powered buoyancy driving system of the ocean profiler. The purpose of this study was to explore an ocean profiler buoyancy driving system powered by ocean thermal energy (OTE). According to the seawater profile temperature gradient, an OTE-powered electro-hydraulic control system was designed, and the dynamic characteristics of this system are simulated and analyzed by using the power bonding diagram method. Based on the results conducted from lake tests, this profiler possesses the self-driving capability for using OTE perfectly. This research can provide important guidance for the design of the buoyancy drive system of underwater vehicles.


The use of organic isobutane will be investigated for a closed-cycle Ocean Thermal Energy Conversion (OTEC) onshore plant that delivers 110 MW electric powers. This paper will cover concept, process, energy calculations, cost factoids and environmental aspects. In isobutane cycle, hot ocean surface water is used to vaporize and to superheat isobutane in a heat exchanger. Isobutane vapor then expands through a turbine to generate useful power. The exhaust vapor is condensed afterwards, using the cold deeper ocean water, and pumped to a heat exchanger to complete a cycle. Results show the major design characteristics and equipment's of the OTEC plant along with cycle efficiency and cycle improvement techniques.


Sign in / Sign up

Export Citation Format

Share Document