Scheme to Tap Remaining Oil Potential in Poor Pay Zones

2013 ◽  
Vol 734-737 ◽  
pp. 1257-1261
Author(s):  
Ji Cheng Zhang ◽  
Shu Hong Zhao ◽  
Jin Yu Lan ◽  
Kao Ping Song

This paper analyzed the balanced flood performance of various layers and the remaining oil distribution through numerical simulation technique. It shows that, the main remaining oil type of intended layers is caused by voidage-injection imperfection. Considering the needs of the follow-up infill well pattern and tertiary oil recovery, we decide to maintain the relative independence and integrity of each well network without disturbing the pattern configuration and the mining exploit object of various sets of well pattern. Finally we confirm to perforate adding the first infill wells of intended layers to consummate the water flooding regime. Through analyzing the production target of different well pattern optimization programs relatively, it shows that the best program has regular well pattern and large drilled thickness.

2012 ◽  
Vol 594-597 ◽  
pp. 2541-2544
Author(s):  
Xiao Hui Wu ◽  
Kao Ping Song ◽  
Chi Dong ◽  
Ji Cheng Zhang ◽  
Jing Fu Deng

As line well pattern is the main development technique in the thin and poor oil layers of Daqing Oilfield South West Ⅱ PⅠ group, the layers have been idle and the degree of reserve recovery is far less than the region level. In response to these problems, we analyzed the balanced flood performance of various layers and the remaining oil distribution through numerical simulation technique. It shows that, the main remaining oil type of intended layers is caused by voidage-injection imperfection. Considering the needs of the follow-up infill well pattern and tertiary oil recovery, we decided to keep the well network independent and integrated without disturbing the pattern configuration and main mining object of various sets of well pattern. Finally we confirmed to perforate-adding the first infill wells of intended layers to consummate the water flooding regime. Through analyzing the production target of different well pattern optimization programs relatively, it shows that the best program has regular well pattern and large drilled thickness.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Shibao Yuan ◽  
Rui Wang ◽  
Haiyan Jiang ◽  
Qing Xie ◽  
Shengnan Chen ◽  
...  

The complex fault block reservoir has the characteristics of small area and many layers in vertical. Due to the influence of formation heterogeneity and well pattern, the situation that “water fingering is serious with water injection, on the contrary, driving energy is low” frequently occurs in water flooding, which makes it difficult to enhance oil recovery. Asynchronous injection-production (AIP) process divides the conventional continuous injection-production process into two independent processes: injection stage and production stage. In order to study oil recovery in the fault block reservoir by AIP technology, a triangle closed block reservoir is divided into 7 subareas. The result of numerical simulation indicates that all subareas have the characteristic of fluid diverting and remaining oil in the central area is also affected by injected water at injection stage of AIP technology. Remaining oil in the central area is driven to the included angle and border area by injected water and then produced at the production stage. Finally, the oil recovery in the central area rises by 5.2% and in the noncentral area is also increased in different levels. The AIP process can realize the alternative change of reservoir pressure, change the distribution of flow field, and enlarge the swept area by injected water. To sum it up, the AIP process is an effective method to improve the oil recovery in complex fault-block reservoir by water flooding.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Yongfei Yang ◽  
Haiyuan Yang ◽  
Liu Tao ◽  
Jun Yao ◽  
Wendong Wang ◽  
...  

To investigate the characteristics of oil distribution in porous media systems during a high water cut stage, sandstones with different permeability scales of 53.63 × 10−3 μm2 and 108.11 × 10−3 μm2 were imaged under a resolution of 4.12 μm during a water flooding process using X-ray tomography. Based on the cluster-size distribution of oil segmented from the tomography images and through classification using the shape factor and Euler number, the transformation of the oil distribution pattern in different injection stages was studied for samples with different pore structures. In general, the distribution patterns of an oil cluster continuously change during water injection. Large connected oil clusters break off into smaller segments. The sandstone with a higher permeability (108.11 × 10−3 μm2) shows the larger change in distribution pattern, and the remaining oil is trapped in the pores with a radius of approximately 7–12 μm. Meanwhile, some disconnected clusters merge together and lead to a re-connection during the high water cut period. However, the pore structure becomes compact and complex, the residual nonwetting phase becomes static and is difficult to move; and thus, all distribution patterns coexist during the entire displacement process and mainly distribute in pores with a radius of 8–12 μm. For the pore-scale entrapment characteristics of the oil phase during a high water cut period, different enhance oil recovery (EOR) methods should be considered in sandstones correspondent to each permeability scale.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3789 ◽  
Author(s):  
He ◽  
Chen ◽  
Yu ◽  
Wen ◽  
Liu

Surfactant–polymer (SP) flooding has significant potential to enhance oil recovery after water flooding in mature reservoirs. However, the economic benefit of the SP flooding process is unsatisfactory under low oil prices. Thus, it is necessary to reduce the chemical costs and improve SP flooding efficiency to make SP flooding more profitable. Our goal was to maximize the incremental oil recovery of the SP flooding process after water flooding by using the equal chemical consumption cost to ensure the economic viability of the SP flooding process. Thus, a systematic study was carried out to investigate the SP flooding process under different injection strategies by conducting parallel sand pack flooding experiments to optimize the SP flooding design. Then, the comparison of the remaining oil distribution after water flooding and SP flooding under different injection strategies was studied. The results demonstrate that the EOR efficiency of the SP flooding process under the alternating injection of polymer and surfactant–polymer (PASP) is higher than that of conventional simultaneous injection of surfactant and polymer. Moreover, as the alternating cycle increases, the incremental oil recovery increases. Based on the analysis of fractional flow, incremental oil recovery, and remaining oil distribution when compared with the conventional simultaneous injection of surfactant and polymer, the alternating injection of polymer and surfactant–polymer (PASP) showed better sweep efficiency improvement and recovered more remaining oil trapped in the low permeability zone. Thus, these findings could provide insights into designing the SP flooding process under low oil prices.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Gaocheng Feng ◽  
Yuhui Zhou ◽  
Weiying Yao ◽  
Lingtong Liu ◽  
Zhao Feng ◽  
...  

Most multilayer sandstone reservoirs in the Bohai Sea have already entered the middle or high water cut production stage with large amounts of remaining oil being scattered distributed. Therefore, there is an urgent need to find a suitable countermeasure to reduce water cut and increase oil recovery. In this study, taking the narrow-channel reservoirs in the M oilfield as an example, we qualitatively described the sand body scale and the contact relationships between different sand bodies, in addition to carefully analyzing the material base and remaining oil distribution characteristics. Accordingly, we proposed a countermeasure based on the injection-production structural adjustment to reduce water cut and increase oil recovery from high water cut, narrow-channel reservoirs. Herein, three optimization strategies were developed based on the proposed development mode: a seepage field optimization strategy was developed based on the quantified injection-production index; a well pattern optimization strategy for narrow-channel reservoirs was developed to overcome the production energy refueling problem; an injection-production measure optimization strategy was developed to tap the different types of remaining oil. Additionally, the well pattern optimization and injection-production optimization strategies were integrated to optimize and adjust the seepage field system. The findings reported herein this paper help understand the development of similar offshore oilfields with a high water cut.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jie Zhang ◽  
Feifei Fang ◽  
Jie Wang ◽  
Yajie Tian ◽  
Fei Mo ◽  
...  

At high water cut stage, the study of remaining oil distribution in water-flooding reservoir is the basis of implementing potential-tapping measures and enhancing oil recovery. At present, most of the oilfields in China have entered the stage of ultrahigh water cut. The reserves of the oilfields are highly developed, the situation of water flooding is extremely complex, and it is difficult to predict the distribution of the remaining oil, which seriously restricts the adjustment of the production measures, tapping the potential and improving the ultimate recovery rate. In view of aforementioned difficulties, this study puts forward a research approach to predict remaining oil distribution based on reservoir heterogeneity, which can quantitatively characterize reservoir heterogeneity. In order to avoid the drawback that a single parameter cannot fully describe the characteristics of pore structure, the composite index of pore structure (SQRT(K/Φ)) is introduced to study the pore microstructure. The composite index of pore structure is used to predict the distribution of remaining oil in the formation, and the results are basically consistent with those calculated by numerical simulation. It is concluded that the larger the fractal dimension of the composite index of pore structure is, the stronger the heterogeneity of reservoir is; the smaller the composite index of pore structure is, the smaller the recovery degree is. The composite index of pore structure is used to analyze and predict the distribution of remaining oil in the layer, which provides a new direction for the prediction method of remaining oil.


2014 ◽  
Vol 556-562 ◽  
pp. 937-939
Author(s):  
Xue Li ◽  
Jing Rui Xu ◽  
Jin Liang Zhang

Heavy oil, with the characteristics of high viscosity and large density, is the most important component of petroleum hydrocarbon energy. In reservoir exploration, its dynamic resistance not only reduces driven efficiency, but also brings much more exploration difficulty, so it is not feasible to exploit heavy oil with conventional methods. Previous studies have carried heavy oil research , but few have attempted to examine the impact of heavy oil on reservoir properties .In this paper, a detailed analysis of heavy oil distribution and remaining oil distribution of G6 block is performed. The conclusion are drawn: the local water flooding and local remaining oil selectively accumulation are caused by heavy oil through reducing water flooding efficiency; As to heavy oil recovery, appropriate exploration should be selected to reduce viscosity of heavy oil according to different geological conditions.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2305
Author(s):  
Xiangbin Liu ◽  
Le Wang ◽  
Jun Wang ◽  
Junwei Su

The particles, water and oil three-phase flow behaviors at the pore scale is significant to clarify the dynamic mechanism in the particle flooding process. In this work, a newly developed direct numerical simulation techniques, i.e., VOF-FDM-DEM method is employed to perform the simulation of several different particle flooding processes after water flooding, which are carried out with a porous structure obtained by CT scanning of a real rock. The study on the distribution of remaining oil and the displacement process of viscoelastic particles shows that the capillary barrier near the location with the abrupt change of pore radius is the main reason for the formation of remaining oil. There is a dynamic threshold in the process of producing remaining oil. Only when the displacement force exceeds this threshold, the remaining oil can be produced. The flow behavior of particle–oil–water under three different flooding modes, i.e., continuous injection, alternate injection and slug injection, is studied. It is found that the particle size and the injection mode have an important influence on the fluid flow. On this basis, the flow behavior, pressure characteristics and recovery efficiency of the three injection modes are compared. It is found that by injecting two kinds of fluids with different resistance increasing ability into the pores, they can enter into different pore channels, resulting in the imbalance of the force on the remaining oil interface and formation of different resistance between the channels, which can realize the rapid recovery of the remaining oil.


Sign in / Sign up

Export Citation Format

Share Document